
Building and Solving Nonlinear Optimal
Control and Estimation Problems

Jan Poland Alf J. Isaksson
ABB Corporate Research

<jan.poland@ch.abb.com> <alf.isaksson@se.abb.com>

Peter Aronsson
MathCore Engineering AB

< peter.aronsson@mathcore.com>

Abstract

We introduce a tool for obtaining optimal control
and estimation problems from graphical models.
Graphical models are constructed by combining
blocks that can be implemented in Modelica or taken
from a palette. The models can be used for predictive
control, moving horizon estimation, and/or parame-
ter estimation. We show that the solution time and
robustness of the resulting nonlinear program
strongly depends on the way the model was built and
translated. These observations yield modeling guide-
lines for increasing robustness and efficiency of the
optimization. In particular, we find out that eliminat-
ing as many variables as possible from the optimiza-
tion problem may help a lot.
Keywords: Modelica; Optimization; Optimal Con-
trol; State Estimation; Receding Horizon; MPC;
MHE

1 Introduction

Model-based methods have been important in many
industrial applications for a long time, and their im-
portance still increases today. One typical applica-
tion field is simulation, where computer models are
used to approximate physical processes to great ac-
curacy. Today’s models used for simulation are often
very complex.
In contrast, computational limits are reached much
earlier if a model is used for (online) optimization.
Nevertheless, Model Predictive Control (MPC) [1] is
nowadays a widely applied optimal control method
which works by translating the model to an optimiza-
tion problem, with the help of a performance meas-
ure (“cost function”) defined in terms of the vari-
ables in the model. As opposed to other optimal con-

trol methods such as the linear quadratic regulator
(LQR), this allows to accommodate constraints,
which is very important in practice. In most applica-
tions, the optimization problem is formulated and
solved for a fixed horizon in time, and the resulting
first control move is applied to the plant. This proce-
dure is applied repeatedly (“receding horizon con-
trol”).
Most MPC applications work with models that are
discrete in time or discretized. Depending on the
type of the model (linear, nonlinear, involving con-
tinuous or discrete variables or both) and the cost
functions, different types of optimization problems
can arise: linear programs (if both the model and the
cost function are linear), quadratic programs (linear
model and quadratic cost function), mixed integer
linear / quadratic programs (linear model with dis-
crete variables), or (mixed integer) nonlinear pro-
grams (NLP) (resulting from a nonlinear model with-
out or with discrete variables). We restrict our atten-
tion to the online optimization approach, where the
full optimization problem has to be solved in each
time step (as opposed to approaches where this is
avoided, such as explicit MPC). Hence, the question
if MPC can be used efficiently and robustly for an
application can be answered in the affirmative if an
appropriate solver for the optimization is available.
Consequently, most existing industrial applications
use MPC based on linear models. Furthermore, since
reliable and efficient mixed integer linear solvers
have been available for some time now, also models
with discrete variables become increasingly popular
[2]. On the other hand, nonlinear models result in
nonlinear programs (NLPs) which are much harder
to solve in general. In particular, solving to global
optimality is not possible unless the problem is small
or additional structure is given (e.g. convexity
holds). Consequently, for nonlinear MPC (NMPC),
proving guarantees on the performance, stability, etc.

is often impossible. Still, there have been successful
applications of NMPC, e.g. [3].
Recently, both computational hardware and nonlin-
ear solvers have become more powerful, making
nonlinear MPC applicable for more complex models
in principle. In this paper, we will solve NMPC
problems without further considering provable per-
formance guarantees, stability, etc. All results in this
work have been obtained with IpOpt [4]. We will see
later on that it happens quite easily that models are
translated to NLPs that are highly multimodal and
very difficult to solve. Hence, it is important to con-
struct models in a favorable way. Showing how to do
so is one focus of this paper.
Design of the model is rightly considered to be the
most difficult and involved task when constructing a
model predictive controller. In industrial applications
in particular, it is highly desirable that engineers with
a moderate mathematical background are able to do
so. For this aim, graphical modeling environments
are especially appropriate: Models are constructed by
using blocks and connecting them by lines. Each line
represents a signal that leaves one block and enters
another block1.
Blocks should be intuitively understandable func-
tions, e.g. summation of signals, some (nonlinear)
function of a signal, or an integrator. A model library
or palette should be available which contains a suffi-
ciently flexible collection of predefined blocks,
while it must be possible to implement customized
blocks. In the present tool, this is done in Modelica.
In short, the main graphical modeling functionality
of existing Modelica environments (e.g. Dymola,
MathModelica) is desirable.
A corresponding graphical modeling environment
for linear models with continuous and discrete vari-
ables has been realized in ABB’s commercial control
and optimization platform Expert Optimizer [8], [5].
Combination of blocks is based on matrix multiplica-
tion in principle, and the resulting optimization prob-
lems (linear programs, quadratic programs, mixed
integer linear programs, or mixed integer quadratic
programs) are internally represented as matrices.
Blocks can be implemented in a description language
for this kind of hybrid systems, HYSDEL [6].
We will see that for nonlinear optimization, the way
how blocks are implemented and combined can

1 Note that this is less expressive than standard Modelica,
which is object-oriented, and where signals can represent
causal structure. However, since our graphical modeling
environment allows importing Modelica blocks from
MathModelica (see below), we do not lose Modelica’s full
expressiveness.

really make a computational difference. Standard
graphical Modelica environments (e.g. Dymola,
MathModelica) treat a model as a DAE system, and
each block that is added to the system typically adds
to the number of variables in the system. For in-
stance, if the squared difference of some process
variable x to some other signal is of interest, one
could attach a corresponding difference to the signal
x and then a square function to the difference. Usu-
ally, all these quantities will become extra variables
in the DAE system. For simulating the system, this
will not introduce particular difficulties. For optimi-
zation however, it can be very important that these
extra variables do not enter the system, but are
eliminated. In our framework, still Modelica code
written in MathModelica is used to realize user-
defined blocks2. When connecting blocks however,
the chain rule is the crucial instrument that we use to
eliminate variables.
In the tool we present in this work, graphical models
are formulated (stated) in Matlab/Simulink. They are
then used to state objective, constraints, derivatives,
Jacobian and Hessian of the associated optimization
problem by recursively parsing the model for each
evaluation.
So far, we have been talking only of optimal control
problems. Typical MPC needs starting values for all
states of the model in order to compute and optimize
future trajectories. If not all states are observed, then
the model can be conveniently used for estimating
them, using the moving horizon estimation (MHE,
[10]) approach. Here, for a fixed number of time
steps in the past, an optimization problem is formu-
lated and solved in order to find those values for the
state variables that are most in accordance with the
observations and the model dynamics. Technically,
the MHE task translates to a similar optimization
problem as MPC. MHE can be extended to estimat-
ing some of the model parameters by adding them as
states to the model.
The optimization framework discussed in this paper
is similar to ABB’s Dynamic Optimizer described in
[7], but has a different scope: It is located at a higher
level of a plant’s automation system and to be inte-
grated into Expert Optimizer, and it focuses on
highly customizable modeling by offering a direct
access to the graphical modeling environment. As
opposed to other modeling frameworks, it directly
translates a graphical model into an optimization
problem, where care is taken to perform the transla-

2 Actually, MathCore and ABB have developed together
the ABB edition of MathModelica, which the optimization
framework we discuss is based on.

tion in a way that robust and fast-to-solve optimiza-
tion problems are obtained. One key for this is vari-
able elimination, as we will see below.

2 Translating a Graphical Model

Consider, for an illustration, the well-known inverted
pendulum model

,
)sin(

u
l

g += θθ��

where θ is the angle of the pendulum (the upright
position is at θ = 0), g is the gravitational force, l is
the length of the pendulum (in the experiments be-
low, we used g / l = 0.5), and u is (a constant multi-
ple of) the torque applied. A graphical model repre-
senting this is shown in the red framed part of Figure
1. Here, the constants are hidden in the “plus” block,
and the evolution of θ and θ� is implemented by sin-
gle input single output linear time-continuous dy-
namics

.
,

DuCxy

BuAxx

+=
+=�

 (eq. 1)

Each of the blocks “theta” and “theta_dot” has one
own state, and the parameters are set to A = 0, B = 1,
C = 1, and D = 0, respectively.

Figure 1: An inverted pendulum model

The implementation shown in Figure 1 is the Simu-
link model, which allows for a maximum variable
elimination. A functionally equivalent model can be
implemented graphically in MathModelica shown in
Figure 2. Also, the following Modelica listing repre-
sents the same model:

Figure 2: The inverted pendulum model graphically
implemented in MathModelica

block InvertedPendulum
 parameter Real g;
 parameter Real l;
 Real theta;
 Real th_dot;
 output Real y;
 input Real u;
equation
 der(theta) = th_dot;
 der(th_dot)= g*sin(theta)/l+u;
 y=theta;
end InvertedPendulum;

2.1 The Optimal Control Problem

Translating a dynamic model into an optimal control
problem including user-defined constraints is a well-
established method: Let n

j
j

tt xx 1)(== be the vector

of variables in the model realized in a single time
step t. A realized variable is a model variable that is
present in the optimization problem, as opposed to a
virtual variable, which is not present. Then an opti-
mal control problem, discrete in time and for a hori-
zon of M > 0, is stated as

.

,00)(sconstraint

,00)equations(

,1)dynamics(
..

)(cost)(

0

1

0

statesjallforxx

Mtallforx

Mtallforx

Mtallforxx

ts

xxJ

j
start

j

tt

t

tt

M

t
tt

opt

∈=

≤≤≤
≤≤=

≤≤=

=

−

=
�

Out2
2

Out1
1

weight

theta_dot

d A B
dt C D

theta

d A B
dt C D

sin

power1

power

plus observation

obs. input (delayed)

costs1

costs

bounds

NMT scope

In1
1

=45

(square)

Here, the realized variables comprise at least the in-
puts to be optimized (and typically they comprise
more variables). Costs and constraints may be time
dependent, and xstart contains the starting values of
the states. Note that this framework also permits the
formulation of a static optimization problem, where
M = 0 and states = ∅. Figure 1 shows how cost func-
tions can be graphically stated.
This optimization problem is solved, in the present
work, always with IpOpt [4]. We provide all deriva-
tive information up to the Hessian, computed ana-
lytically, to the solver.
Translation of Modelica components is done by
MathModelica ABB Edition.
If we are dealing with a time continuous system, the
system must be discretized. Here and in the follow-
ing we assume that discretization is performed ac-
cording to implicit Euler, i.e. a differential equation

,...).,(x
 tod translateis ,...),(

1t ttt uxftx

uxfx

⋅∆+=
=

−

�

A crucial question to be posed here is which respec-
tively how many variables should be realized as part
of xt. It is clear that at least the inputs to be optimized
and the states need to be realized (unless we are able
to and desire to recursively solve the evolution equa-
tions for the states). However, we can include more
or less of the variables defined by the equations into
our optimization problem3. This decision has a sig-
nificant impact on the computational time required to
solve the resulting optimization problem, as well as
the robustness of the solving. We show two numeri-
cal examples at this point and draw some conclu-
sions.

0 10 20 30
-1

0

1

2

3

4

time [steps]

force
thetadot
theta

Figure 3: Swing-up trajectory for the inverted
pendulum

3 Not including, i.e. eliminating a variable that appears in
a cost function or a constraint implies that we will need to
use the chain rule to compute its derivatives.

For the first example, we consider the inverted pen-
dulum model. The weights and bounds on the input
are tuned in a way that the optimum is a swing-up, as
shown in Figure 3. In the following table, we evalu-
ated the probability that IpOpt finds this optimal so-
lution, starting from randomly initialized values (uni-
formly in [0, 10]) for all realized variables. We fur-
ther show the time IpOpt requires on average, as well
as the average quality of the successful solutions: the
number of time steps after which the predicted tra-
jectory converges to the target. The averages of 500
runs each are shown.

Realized variables Success

rate[%]
Quality
[steps]

Time
[s]

States and input only (3
per step)

41.2 22.7 0.27

States, input + input and
output of θ (5 per step)

42.4 23.0 0.37

As above plus input and

output of θ� (6 per step)
46 22.6 0.42

As above plus output of
the “sin” block (7 per
step)

37.4 22.7 0.55

The second numerical example we show is a static
nonlinear optimization problem defined by the model
in Figure 4, which represents the equation

() (
) ()

.41

8707.95

..

85)exp(1065.4

)2exp(10649.81)8(2

2

1

2
11

5

1
92

1
3

21
2
2

≤≤
≤≤

−+⋅

−⋅++−−=
−

−

u

u

ts

uu

uuuuuy

y=u1+5u2

y=2u1+u2+4u3-u4

x4.65e-5

square

square

square

product

exp

difference

difference

cube

costs

const=8

const=1

5<=u<=10

1<=u<=4

-10<=u<=0.9

2

1

Figure 4: A static nonlinear optimization problem

Figure 5: Static nonlinear optimization problem:
Probability of converging to the global optimum for six
different scenarios, shown in dependence of the 2-
dimensional starting points. Hot colors indicate high
probabilities, the large area in the top left plot is prob-
ability one. The globally optimal solution is shown as a
cyan circle, there are two local optimal shown as blue
circles. Top left: only the inputs are realized (1), top
right: the inputs and the output of the product are re-
alized (2), middle left: the inputs and in- and outputs
of the product are realized (3), middle right: all signals
are realized (4), bottom: scenarios (2a) and (3a) with
consistent initialization.

The first input variable is plotted over [5, 10], the
second input variable over [1, 4]. We test four differ-
ent scenarios: (1) realizing only the input variables
(i.e. 2 variables), (2) realizing in addition the output
of the product (i.e. 3 variables), (3) realizing in addi-
tion the inputs of the product (i.e. 6 variables), and
(4) realizing all signals in Figure 4. The resulting
computation time and probability of finding the
global optimum are summarized in the table below.
Figure 5 shows the probabilities of convergence as a
function of the starting point for the two inputs (all
other realized variables have been initialized with
Gaussian distributed values). We observe that for
starting points around the global optimum, we relia-
bly converge in scenario (1), while this is no longer
true in scenario (2) and seems almost completely

arbitrary in scenarios (3) and (4). If we modify sce-
nario (2) and (3) such that the realized variables are
initialized with the values corresponding to the in-
puts instead of Gaussian, we get scenarios (2a) and
(3a), and the computation times and probabilities can
be seen below.

Scenario Success rate [%] Time [s]

(1) 62.0 0.004
(2) 22.1 0.004

(3) 10.9 0.021

(4) 20.2 0.01
(2a) 22.1 0.005
(3a) 27.4 0.022

2.2 Consequences and Recommendations for
realizing or eliminating variables

The two examples clearly show that the time re-
quired for solving the optimization problem in-
creases with the number of realized variables. Al-
though this has been observed for IpOpt only here, it
is realistic to say that the statement can be general-
ized to any solver. In particular, more variables re-
quire more equality constraints to be satisfied and
hence typically increase the number of iterations
needed by the solver. In the second of the above ex-
amples, scenarios (3) and (4) need about 20 times
more CPU times than (1) and (2). Looking a bit
closer into what happens when IpOpt optimizes sce-
narios (3) and (4), what can be observed is the fol-
lowing: In the first step of the optimization, the
equality constraints are non-satisfied to a high de-
gree, causing the actual solution to move very far
away, where in particular the input variables leave
the box. Then, it takes quite long for the solution to
get back into the region which is feasible for the in-
put variables. The dependence on the exact starting
points is very sensitive (chaotic), which causes the
rough behavior of the middle two graphs in Figure 5.
This happens to a much lesser degree in scenario (2),
and not at all in scenario (1). Even when we use a
consistent initialization, i.e. one that satisfies the
constraints, we see in the lower two graphs that we
do not improve the roughness much.
In the inverted pendulum example, we see that simi-
lar things happen (not as strongly as in the other ex-
ample). However, introducing additional variables
may to a certain extent even help the optimizer to
find the global optimum.

In general, we expect that the optimization problem
will be not only more efficiently, but also more ro-
bustly solved, the less variables are realized. In a
MPC situation, typically, we start already close to
the optimal solution, since the starting solution is
obtained by the optimum from one step before.
Hence, the roughness observed for the scenarios (2),
(3) and (4) of the second example is a very undesir-
able property here: it increases the probability that
even in the absence of major disturbances, we will
not be able to track the optimal trajectory.
We summarize: with IpOpt as underlying solver, our
results indicate that for both robustness and solution
time it is favorable in general to realize as few vari-
ables as possible. For the robustness, there are excep-
tions where realizing some variables may be good.
The solution time is always expected to increase with
more variables, this should also hold for other solv-
ers.

2.3 The Estimation Problem

The optimal control problem needs in particular
starting values for all states. If they are not directly
observed, they can be estimated with a model-based
observer that uses the same model as MPC. To this
aim, the following cost function (“moving horizon
estimator”) can be minimized [10]:

.

,01)(

,010)(sconstraint

,010)equations(

,02)dynamics(

..

)(

1

1

0

1

2

2

0

2

2

2

2

2

statesjallforxx

tNallforxyy

tNallforx

tNallforx

tNallforxx

ts

xJ

j
initial

j
initial

j
N

j
initial

obs
t

obs
tt

obs
t

tt

t

state
t

state
ttt

Nt

obs
t

Nt

state
t

initialest

∈+=

≤≤+−+=

≤≤+−≤
≤≤+−=

≤≤+−+=

++=

+−

−

+−=+−=
��

εσ
εσ

εσ

εεε

Here, we minimize the quadratic state noise εt

state,
measurement noise εt

obs, and initial state noise εinitial,
with weighting factors that are standard deviations
(i.e. scales of the noise) σt

state, σt
obs, and σinitial, re-

spectively. For the standard deviations, the valid
range is [0, ∞]. The quantity yt

obs contains the obser-
vations available at time t, while xj

initial is the target
for the initial state (if desired). The constraints may
but need to be the same as in the definition of Jopt, in
general it makes sense to consider a subset here.
It is just a matter of notational convenience to in-
clude the noise variables (“slack variables”) εt

state,
εt

obs, and εinitial explicitly in the formulation of the
optimization problem. It not necessary to realize

them, in fact, it may be more efficient not to do so.
In the following simulations, we do not realize the
noise variables.
Figure 6 shows an example trajectory of the estima-
tion (and then optimization) with the inverted pendu-
lum model from Figure 1. There are two observa-
tions defined, namely the input force and θ. The
speed θ� is not observed, but is reliably estimated.

-5 0 5 10 15 20

0

1

2

3

time [steps]

force
theta
thetadot
costs

Figure 6: Estimation and optimization trajectory for
the inverted pendulum model. Observations are
marked by circles, dotted lines are estimations.

2.4 Reducing Interactions in Case of Poor Ob-
servability

The toolbox presented in this work facilitates com-
bining models of a large plant from its parts, and op-
timizing the plant as a whole. In practice however,
the whole plant may not be sufficiently observable to
allow a reliable state estimation based on the com-
plete model. Namely, if there are relatively poor
measurements available in the parts of the plant, the
estimation will use the model in order to obtain the
numerically most likely estimator for the joint state
of the plant. If the model does not very well match
the plant, this procedure can easily result in estimates
that are poor, or that drastically change from one
time step to the next. Of course, this is highly unde-
sirable, as it prevents the model-based controller
from stabilizing the plant.
Here, we describe two techniques for cutting the
model in several parts that do not interact in the es-
timation. Hence, the measurements available within
one part of the plant are used only within that part,
and do not interact with different parts.

2.4.1 Cutting with dynamics
If the parts to be separated are connected by one or
more blocks that evolve dynamically, e.g. a delay or

a filter, then it is possible to not estimate the states of
these blocks, but rather provide their values by an
external simulation. In the estimation problem, the
dynamics of these blocks are removed from the cost
function / constraints.

2.4.2 Cutting without dynamics
If two parts to be separated are connected without
dynamics, then the following method can be used:
The connection is broken, the estimation is executed
with open connection, and some constant value is
used as input for the destination of the broken con-
nection. After the estimation, the states in the part
connected to the source of the broken connection
have attained their values. Now, also the value the
broken signal should have is known. Hence, we need
to use this value as an input for the destination of the
broken connection and rerun the estimation. In gen-
eral, if the model is divided into n parts, we need to
run the estimation for n times. Note that this method
may not converge if the dependence of the parts is
circular, hence it should be used only for tree struc-
tures (and we should run the estimation n times,
where n is then length of the longest branch of the
tree). Also, a signal to be cut must have a clear direc-
tion, providing its value from the source to the desti-
nation. It must not be used as an implicit input,
which enters the dynamics or equations at the source
and is defined by some constraint at the destination.

2.5 Parameter Estimation

If observability permits, parameters can be coded as
states and estimated by the state estimation. One
standard procedure to do so is coding a parameter as
a state which evolves as a constant and admits state
noise.

3 A Building Block Library

Here we describe a basic set of blocks that is suffi-
cient to model a broad variety of plants.

3.1.1 Single input single output lin-
ear time-continuous dynamics, as de-
scribed in (eq. 1).

3.1.2 Single input single output lin-
ear time-discrete dynamics:

.

,11

ttt

ttt

DuCxy

BuAxx

+=
+= −−

3.1.3 Constant

3.1.4 Adaptive constant / bias term,
see 2.5.

3.1.5 Nonlinear function, to be cho-
sen from {exp, log, sin, cos, tan, sinh,
cosh, tanh, asin, acos, atan}

3.1.6 Power, i.e. y = un

3.1.7 Weighted sum (linear combina-
tion), i.e. y = a1u1 + … + anun . Also
implements gains.

3.1.8 Product: y = u1 × … × un

3.1.9 n-step delay

3.1.10 Generalized absolute function.
The function y = abs(u) can be imple-
mented using an auxiliary variable z to
be minimized, and including z ≥ u and
z ≥ -u to the constraint set. This block
implements a general convex piecewise
linear function with the same principle.

3.1.11 Upper and lower bounds

3.1.12 Marks a signal as a cost func-
tion

3.1.13 Marks a signal as an observa-
tion

3.1.14 Cut for estimation without dy-
namics as described in 2.4.2.

3.1.15 Users can implement own
Modelica blocks.

Note that these basic blocks are sufficient to express
a wide range of coupled ODE systems. For example,
the following model encodes a harmonic oscillator.

d A B
dt C D

A B
C D

t-X

$

(est)

y=-u

a=0, b=1, c=1, d=0

d A B
dt C D

a=0, b=1, c=1, d=0

d A B
dt C D

4 Applications, Discussion and Con-
clusions

We have presented several simulations with toy ex-
amples in this paper. The modeling framework pre-
sented here will become part of ABB’s advanced
process control and optimization platform Expert
Optimizer, which is described e.g. in [8]. This article
and [7], [9] report some results from application of
similar modeling techniques to industrial plants. Our
modeling framework has been based on the results of
ongoing collaboration of ABB and MathCore, [11]
describes an early application of related methods.
We have presented a graphical modeling framework
and a procedure to directly translate graphical mod-
els into optimization problems. We have collected
some evidence that, for formulating the optimization
problems, it is favorable for speed and robustness to
realize as few variables as possible.

References

[1] J. Maciejowski: Predictive Control with Con-
straints. Pearson Education Limited, Pren-
tice-Hall, Essex, United Kingdom (2002).

[2] A. Bemporad and M. Morari: Control of sys-
tems integrating logic, dynamics, and con-
straints, Automatica 35(3) (1999), 407-427.

[3] R. Franke, M. Rode, K. Krüger: On-line Op-
timization of Drum Boiler Startup. Proceed-
ings of the 3rd International Modelica Con-
ference, Linköping, November 3-4, 2003.

[4] A. Wächter and L. T. Biegler: On the imple-
mentation of a primal-dual interior point fil-
ter line search algorithm for large-scale
nonlinear programming. Mathematical Pro-
gramming, 106(1):25-57, 2006.

[5] E. Gallestey, D. Castagnoli, and A. Stothert:
Method of generating optimal control prob-
lems for industrial processes, European Pat-
ent EP1607809 (2006).

[6] F.D. Torrisi and A. Bemporad: HYSDEL - A
tool for generating computational hybrid
models for analysis and synthesis problems.
IEEE Transactions on Control Systems
Technology 12(2) (2004), 235-249.

[7] R. Franke, B. S. Babji, M. Antoine, A. Isaks-
son: Model-based online applications in the
ABB Dynamic Optimization framework.
Proceedings of the Modelica Conference,
2008, pp. 279-285.

[8] K. Stadler, E. Gallestey, J. Poland, G. Cairns:
Optimal Trade-Offs. ABB Review, 2/2009,
pp. 17-22.

[9] E. Dahlquist, F. Wallin, H. Ekwall: Dynamic
simulators for process control and optimiza-
tion as well as for operator training in pulp
and paper industry, SIMS - 43rd Conference
on Simulation and Modeling, Oulu, 2002

[10] C.V. Rao: Moving Horizon Strategies for the
Constrained Monitoring and Control of
Nonlinear Discrete-Time Systems, Ph.D.
Thesis, University of Wisconsin, 2000.

[11] J. Pettersson, L. Ledung and X. Zhang: Deci-
sion support for pulp mill operations based
on large-scale on-line optimization, Preprints
of Control Systems 2006, Tampere 6-8 June,
2006.

