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Abstract 

We introduce a tool for obtaining optimal control 
and estimation problems from graphical models. 
Graphical models are constructed by combining 
blocks that can be implemented in Modelica or taken 
from a palette. The models can be used for predictive 
control, moving horizon estimation, and/or parame-
ter estimation. We show that the solution time and 
robustness of the resulting nonlinear program 
strongly depends on the way the model was built and 
translated. These observations yield modeling guide-
lines for increasing robustness and efficiency of the 
optimization. In particular, we find out that eliminat-
ing as many variables as possible from the optimiza-
tion problem may help a lot. 
Keywords: Modelica; Optimization; Optimal Con-
trol; State Estimation; Receding Horizon; MPC; 
MHE 

1 Introduction 

Model-based methods have been important in many 
industrial applications for a long time, and their im-
portance still increases today. One typical applica-
tion field is simulation, where computer models are 
used to approximate physical processes to great ac-
curacy. Today’s models used for simulation are often 
very complex. 
In contrast, computational limits are reached much 
earlier if a model is used for (online) optimization. 
Nevertheless, Model Predictive Control (MPC) [1] is 
nowadays a widely applied optimal control method 
which works by translating the model to an optimiza-
tion problem, with the help of a performance meas-
ure (“cost function”) defined in terms of the vari-
ables in the model. As opposed to other optimal con-

trol methods such as the linear quadratic regulator 
(LQR), this allows to accommodate constraints, 
which is very important in practice. In most applica-
tions, the optimization problem is formulated and 
solved for a fixed horizon in time, and the resulting 
first control move is applied to the plant. This proce-
dure is applied repeatedly (“receding horizon con-
trol”). 
Most MPC applications work with models that are 
discrete in time or discretized. Depending on the 
type of the model (linear, nonlinear, involving con-
tinuous or discrete variables or both) and the cost 
functions, different types of optimization problems 
can arise: linear programs (if both the model and the 
cost function are linear), quadratic programs (linear 
model and quadratic cost function), mixed integer 
linear / quadratic programs (linear model with dis-
crete variables), or (mixed integer) nonlinear pro-
grams (NLP) (resulting from a nonlinear model with-
out or with discrete variables). We restrict our atten-
tion to the online optimization approach, where the 
full optimization problem has to be solved in each 
time step (as opposed to approaches where this is 
avoided, such as explicit MPC). Hence, the question 
if MPC can be used efficiently and robustly for an 
application can be answered in the affirmative if an 
appropriate solver for the optimization is available. 
Consequently, most existing industrial applications 
use MPC based on linear models. Furthermore, since 
reliable and efficient mixed integer linear solvers 
have been available for some time now, also models 
with discrete variables become increasingly popular 
[2]. On the other hand, nonlinear models result in 
nonlinear programs (NLPs) which are much harder 
to solve in general. In particular, solving to global 
optimality is not possible unless the problem is small 
or additional structure is given (e.g. convexity 
holds). Consequently, for nonlinear MPC (NMPC), 
proving guarantees on the performance, stability, etc. 



is often impossible. Still, there have been successful 
applications of NMPC, e.g. [3]. 
Recently, both computational hardware and nonlin-
ear solvers have become more powerful, making 
nonlinear MPC applicable for more complex models 
in principle. In this paper, we will solve NMPC 
problems without further considering provable per-
formance guarantees, stability, etc. All results in this 
work have been obtained with IpOpt [4]. We will see 
later on that it happens quite easily that models are 
translated to NLPs that are highly multimodal and 
very difficult to solve. Hence, it is important to con-
struct models in a favorable way. Showing how to do 
so is one focus of this paper. 
Design of the model is rightly considered to be the 
most difficult and involved task when constructing a 
model predictive controller. In industrial applications 
in particular, it is highly desirable that engineers with 
a moderate mathematical background are able to do 
so. For this aim, graphical modeling environments 
are especially appropriate: Models are constructed by 
using blocks and connecting them by lines. Each line 
represents a signal that leaves one block and enters 
another block1.  
Blocks should be intuitively understandable func-
tions, e.g. summation of signals, some (nonlinear) 
function of a signal, or an integrator. A model library 
or palette should be available which contains a suffi-
ciently flexible collection of predefined blocks, 
while it must be possible to implement customized 
blocks. In the present tool, this is done in Modelica. 
In short, the main graphical modeling functionality 
of existing Modelica environments (e.g. Dymola, 
MathModelica) is desirable. 
A corresponding graphical modeling environment 
for linear models with continuous and discrete vari-
ables has been realized in ABB’s commercial control 
and optimization platform Expert Optimizer [8], [5]. 
Combination of blocks is based on matrix multiplica-
tion in principle, and the resulting optimization prob-
lems (linear programs, quadratic programs, mixed 
integer linear programs, or mixed integer quadratic 
programs) are internally represented as matrices. 
Blocks can be implemented in a description language 
for this kind of hybrid systems, HYSDEL [6]. 
We will see that for nonlinear optimization, the way 
how blocks are implemented and combined can 
                                                      
1 Note that this is less expressive than standard Modelica, 
which is object-oriented, and where signals can represent 
causal structure. However, since our graphical modeling 
environment allows importing Modelica blocks from 
MathModelica (see below), we do not lose Modelica’s full 
expressiveness. 

really make a computational difference. Standard 
graphical Modelica environments (e.g. Dymola, 
MathModelica) treat a model as a DAE system, and 
each block that is added to the system typically adds 
to the number of variables in the system. For in-
stance, if the squared difference of some process 
variable x to some other signal is of interest, one 
could attach a corresponding difference to the signal 
x and then a square function to the difference. Usu-
ally, all these quantities will become extra variables 
in the DAE system. For simulating the system, this 
will not introduce particular difficulties. For optimi-
zation however, it can be very important that these 
extra variables do not enter the system, but are 
eliminated. In our framework, still Modelica code 
written in MathModelica is used to realize user-
defined blocks2. When connecting blocks however, 
the chain rule is the crucial instrument that we use to 
eliminate variables. 
In the tool we present in this work, graphical models 
are formulated (stated) in Matlab/Simulink. They are 
then used to state objective, constraints, derivatives, 
Jacobian and Hessian of the associated optimization 
problem by recursively parsing the model for each 
evaluation. 
So far, we have been talking only of optimal control 
problems. Typical MPC needs starting values for all 
states of the model in order to compute and optimize 
future trajectories. If not all states are observed, then 
the model can be conveniently used for estimating 
them, using the moving horizon estimation (MHE, 
[10]) approach. Here, for a fixed number of time 
steps in the past, an optimization problem is formu-
lated and solved in order to find those values for the 
state variables that are most in accordance with the 
observations and the model dynamics. Technically, 
the MHE task translates to a similar optimization 
problem as MPC. MHE can be extended to estimat-
ing some of the model parameters by adding them as 
states to the model. 
The optimization framework discussed in this paper 
is similar to ABB’s Dynamic Optimizer described in 
[7], but has a different scope: It is located at a higher 
level of a plant’s automation system and to be inte-
grated into Expert Optimizer, and it focuses on 
highly customizable modeling by offering a direct 
access to the graphical modeling environment. As 
opposed to other modeling frameworks, it directly 
translates a graphical model into an optimization 
problem, where care is taken to perform the transla-

                                                      
2 Actually, MathCore and ABB have developed together 
the ABB edition of MathModelica, which the optimization 
framework we discuss is based on.  



tion in a way that robust and fast-to-solve optimiza-
tion problems are obtained. One key for this is vari-
able elimination, as we will see below. 

2 Translating a Graphical Model 

Consider, for an illustration, the well-known inverted 
pendulum model 

,
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where θ is the angle of the pendulum (the upright 
position is at θ = 0), g is the gravitational force, l is 
the length of the pendulum (in the experiments be-
low, we used g / l = 0.5), and u is (a constant multi-
ple of) the torque applied. A graphical model repre-
senting this is shown in the red framed part of Figure 
1. Here, the constants are hidden in the “plus” block, 
and the evolution of θ and θ�  is implemented by sin-
gle input single output linear time-continuous dy-
namics 
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   (eq. 1) 

Each of the blocks “theta” and “theta_dot” has one 
own state, and the parameters are set to A = 0, B = 1, 
C = 1, and D = 0, respectively. 

 

 
Figure 1: An inverted pendulum model 
 
The implementation shown in Figure 1 is the Simu-
link model, which allows for a maximum variable 
elimination. A functionally equivalent model can be 
implemented graphically in MathModelica shown in 
Figure 2. Also, the following Modelica listing repre-
sents the same model: 
 

 
Figure 2: The inverted pendulum model graphically 
implemented in MathModelica 
 
block InvertedPendulum 
 parameter Real g; 
 parameter Real l; 
 Real theta; 
 Real th_dot; 
 output Real y; 
 input Real u; 
equation  
 der(theta) = th_dot; 
 der(th_dot)= g*sin(theta)/l+u; 
 y=theta; 
end InvertedPendulum; 

2.1 The Optimal Control Problem 

Translating a dynamic model into an optimal control 
problem including user-defined constraints is a well-
established method: Let n

j
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of variables in the model realized in a single time 
step t. A realized variable is a model variable that is 
present in the optimization problem, as opposed to a 
virtual variable, which is not present. Then an opti-
mal control problem, discrete in time and for a hori-
zon of M > 0, is stated as 
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Here, the realized variables comprise at least the in-
puts to be optimized (and typically they comprise 
more variables). Costs and constraints may be time 
dependent, and xstart contains the starting values of 
the states. Note that this framework also permits the 
formulation of a static optimization problem, where 
M = 0 and states = ∅. Figure 1 shows how cost func-
tions can be graphically stated. 
This optimization problem is solved, in the present 
work, always with IpOpt [4]. We provide all deriva-
tive information up to the Hessian, computed ana-
lytically, to the solver. 
Translation of Modelica components is done by 
MathModelica ABB Edition. 
If we are dealing with a time continuous system, the 
system must be discretized. Here and in the follow-
ing we assume that discretization is performed ac-
cording to implicit Euler, i.e. a differential equation 
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A crucial question to be posed here is which respec-
tively how many variables should be realized as part 
of xt. It is clear that at least the inputs to be optimized 
and the states need to be realized (unless we are able 
to and desire to recursively solve the evolution equa-
tions for the states). However, we can include more 
or less of the variables defined by the equations into 
our optimization problem3. This decision has a sig-
nificant impact on the computational time required to 
solve the resulting optimization problem, as well as 
the robustness of the solving. We show two numeri-
cal examples at this point and draw some conclu-
sions. 
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Figure 3: Swing-up trajectory for the inverted 
pendulum 
                                                      
3 Not including, i.e. eliminating a variable that appears in 
a cost function or a constraint implies that we will need to 
use the chain rule to compute its derivatives. 

For the first example, we consider the inverted pen-
dulum model. The weights and bounds on the input 
are tuned in a way that the optimum is a swing-up, as 
shown in Figure 3. In the following table, we evalu-
ated the probability that IpOpt finds this optimal so-
lution, starting from randomly initialized values (uni-
formly in [0, 10]) for all realized variables. We fur-
ther show the time IpOpt requires on average, as well 
as the average quality of the successful solutions: the 
number of time steps after which the predicted tra-
jectory converges to the target. The averages of 500 
runs each are shown. 
 
Realized variables Success 

rate[%] 
Quality 
[steps] 

Time 
[s] 

States and input only (3 
per step) 

41.2 22.7 0.27 

States, input + input and 
output of θ  (5 per step) 

42.4 23.0 0.37 

As above plus input and 

output of θ�  (6 per step) 
46 22.6 0.42 

As above plus output of 
the “sin” block (7 per 
step) 

37.4 22.7 0.55 

 
The second numerical example we show is a static 
nonlinear optimization problem defined by the model 
in Figure 4, which represents the equation 
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Figure 4: A static nonlinear optimization problem 
 



 
Figure 5: Static nonlinear optimization problem: 
Probability of converging to the global optimum for six 
different scenarios, shown in dependence of the 2-
dimensional starting points. Hot colors indicate high 
probabilities, the large area in the top left plot is prob-
ability one. The globally optimal solution is shown as a 
cyan circle, there are two local optimal shown as blue 
circles. Top left: only the inputs are realized (1), top 
right: the inputs and the output of the product are re-
alized (2), middle left: the inputs and in- and outputs 
of the product are realized (3), middle right: all signals 
are realized (4), bottom: scenarios (2a) and (3a) with 
consistent initialization. 
 
The first input variable is plotted over [5, 10], the 
second input variable over [1, 4]. We test four differ-
ent scenarios: (1) realizing only the input variables 
(i.e. 2 variables), (2) realizing in addition the output 
of the product (i.e. 3 variables), (3) realizing in addi-
tion the inputs of the product (i.e. 6 variables), and 
(4) realizing all signals in Figure 4. The resulting 
computation time and probability of finding the 
global optimum are summarized in the table below. 
Figure 5 shows the probabilities of convergence as a 
function of the starting point for the two inputs (all 
other realized variables have been initialized with 
Gaussian distributed values). We observe that for 
starting points around the global optimum, we relia-
bly converge in scenario (1), while this is no longer 
true in scenario (2) and seems almost completely 

arbitrary in scenarios (3) and (4). If we modify sce-
nario (2) and (3) such that the realized variables are 
initialized with the values corresponding to the in-
puts instead of Gaussian, we get scenarios (2a) and 
(3a), and the computation times and probabilities can 
be seen below. 
 

Scenario Success rate [%] Time [s] 

(1) 62.0 0.004 
(2) 22.1 0.004 

(3) 10.9 0.021 

(4) 20.2 0.01 
(2a) 22.1 0.005 
(3a) 27.4 0.022 

 

2.2 Consequences and Recommendations for 
realizing or eliminating variables 

The two examples clearly show that the time re-
quired for solving the optimization problem in-
creases with the number of realized variables. Al-
though this has been observed for IpOpt only here, it 
is realistic to say that the statement can be general-
ized to any solver. In particular, more variables re-
quire more equality constraints to be satisfied and 
hence typically increase the number of iterations 
needed by the solver. In the second of the above ex-
amples, scenarios (3) and (4) need about 20 times 
more CPU times than (1) and (2). Looking a bit 
closer into what happens when IpOpt optimizes sce-
narios (3) and (4), what can be observed is the fol-
lowing: In the first step of the optimization, the 
equality constraints are non-satisfied to a high de-
gree, causing the actual solution to move very far 
away, where in particular the input variables leave 
the box. Then, it takes quite long for the solution to 
get back into the region which is feasible for the in-
put variables. The dependence on the exact starting 
points is very sensitive (chaotic), which causes the 
rough behavior of the middle two graphs in Figure 5. 
This happens to a much lesser degree in scenario (2), 
and not at all in scenario (1). Even when we use a 
consistent initialization, i.e. one that satisfies the 
constraints, we see in the lower two graphs that we 
do not improve the roughness much. 
In the inverted pendulum example, we see that simi-
lar things happen (not as strongly as in the other ex-
ample). However, introducing additional variables 
may to a certain extent even help the optimizer to 
find the global optimum. 



In general, we expect that the optimization problem 
will be not only more efficiently, but also more ro-
bustly solved, the less variables are realized. In a 
MPC situation, typically, we start already close to 
the optimal solution, since the starting solution is 
obtained by the optimum from one step before. 
Hence, the roughness observed for the scenarios (2), 
(3) and (4) of the second example is a very undesir-
able property here: it increases the probability that 
even in the absence of major disturbances, we will 
not be able to track the optimal trajectory. 
We summarize: with IpOpt as underlying solver, our 
results indicate that for both robustness and solution 
time it is favorable in general to realize as few vari-
ables as possible. For the robustness, there are excep-
tions where realizing some variables may be good. 
The solution time is always expected to increase with 
more variables, this should also hold for other solv-
ers. 

2.3 The Estimation Problem 

The optimal control problem needs in particular 
starting values for all states. If they are not directly 
observed, they can be estimated with a model-based 
observer that uses the same model as MPC. To this 
aim, the following cost function (“moving horizon 
estimator”) can be minimized [10]: 
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Here, we minimize the quadratic state noise εt

state, 
measurement noise εt

obs, and initial state noise εinitial, 
with weighting factors that are standard deviations 
(i.e. scales of the noise) σt

state, σt
obs, and σinitial, re-

spectively. For the standard deviations, the valid 
range is [0, ∞]. The quantity yt

obs contains the obser-
vations available at time t, while xj

initial is the target 
for the initial state (if desired). The constraints may 
but need to be the same as in the definition of Jopt, in 
general it makes sense to consider a subset here. 
It is just a matter of notational convenience to in-
clude the noise variables (“slack variables”) εt

state, 
εt

obs, and εinitial explicitly in the formulation of the 
optimization problem. It not necessary to realize 

them, in fact, it may be more efficient not to do so. 
In the following simulations, we do not realize the 
noise variables. 
Figure 6 shows an example trajectory of the estima-
tion (and then optimization) with the inverted pendu-
lum model from Figure 1. There are two observa-
tions defined, namely the input force and θ. The 
speed θ�  is not observed, but is reliably estimated. 
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Figure 6: Estimation and optimization trajectory for 
the inverted pendulum model. Observations are 
marked by circles, dotted lines are estimations. 
 

2.4 Reducing Interactions in Case of Poor Ob-
servability 

The toolbox presented in this work facilitates com-
bining models of a large plant from its parts, and op-
timizing the plant as a whole. In practice however, 
the whole plant may not be sufficiently observable to 
allow a reliable state estimation based on the com-
plete model. Namely, if there are relatively poor 
measurements available in the parts of the plant, the 
estimation will use the model in order to obtain the 
numerically most likely estimator for the joint state 
of the plant. If the model does not very well match 
the plant, this procedure can easily result in estimates 
that are poor, or that drastically change from one 
time step to the next. Of course, this is highly unde-
sirable, as it prevents the model-based controller 
from stabilizing the plant. 
Here, we describe two techniques for cutting the 
model in several parts that do not interact in the es-
timation. Hence, the measurements available within 
one part of the plant are used only within that part, 
and do not interact with different parts. 

2.4.1 Cutting with dynamics 
If the parts to be separated are connected by one or 
more blocks that evolve dynamically, e.g. a delay or 



a filter, then it is possible to not estimate the states of 
these blocks, but rather provide their values by an 
external simulation. In the estimation problem, the 
dynamics of these blocks are removed from the cost 
function / constraints. 

2.4.2 Cutting without dynamics 
If two parts to be separated are connected without 
dynamics, then the following method can be used: 
The connection is broken, the estimation is executed 
with open connection, and some constant value is 
used as input for the destination of the broken con-
nection. After the estimation, the states in the part 
connected to the source of the broken connection 
have attained their values. Now, also the value the 
broken signal should have is known. Hence, we need 
to use this value as an input for the destination of the 
broken connection and rerun the estimation. In gen-
eral, if the model is divided into n parts, we need to 
run the estimation for n times. Note that this method 
may not converge if the dependence of the parts is 
circular, hence it should be used only for tree struc-
tures (and we should run the estimation n times, 
where n is then length of the longest branch of the 
tree). Also, a signal to be cut must have a clear direc-
tion, providing its value from the source to the desti-
nation. It must not be used as an implicit input, 
which enters the dynamics or equations at the source 
and is defined by some constraint at the destination. 

2.5 Parameter Estimation 

If observability permits, parameters can be coded as 
states and estimated by the state estimation. One 
standard procedure to do so is coding a parameter as 
a state which evolves as a constant and admits state 
noise. 

3 A Building Block Library 

Here we describe a basic set of blocks that is suffi-
cient to model a broad variety of plants. 

3.1.1 Single input single output lin-
ear time-continuous dynamics, as de-
scribed in (eq. 1). 

3.1.2 Single input single output lin-
ear time-discrete dynamics: 
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3.1.3 Constant 

3.1.4 Adaptive constant / bias term, 
see 2.5. 

3.1.5 Nonlinear function, to be cho-
sen from {exp, log, sin, cos, tan, sinh, 
cosh, tanh, asin, acos, atan} 

3.1.6 Power, i.e.  y = un 

3.1.7 Weighted sum (linear combina-
tion), i.e. y = a1u1 + … + anun . Also 
implements gains. 

3.1.8 Product: y = u1  × … × un 

3.1.9 n-step delay 

3.1.10 Generalized absolute function. 
The function y = abs(u) can be imple-
mented using an auxiliary variable z to  
be minimized, and including z ≥ u and 
z ≥ -u to the constraint set. This block 
implements a general convex piecewise 
linear function with the same principle. 

3.1.11 Upper and lower bounds 

3.1.12 Marks a signal as a cost func-
tion 

3.1.13 Marks a signal as an observa-
tion 

3.1.14 Cut for estimation without dy-
namics as described in 2.4.2.  

3.1.15 Users can implement own 
Modelica blocks. 
 

 
Note that these basic blocks are sufficient to express 
a wide range of coupled ODE systems. For example, 
the following model encodes a harmonic oscillator. 
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4 Applications, Discussion and Con-
clusions 

We have presented several simulations with toy ex-
amples in this paper. The modeling framework pre-
sented here will become part of ABB’s advanced 
process control and optimization platform Expert 
Optimizer, which is described e.g. in [8]. This article 
and [7], [9] report some results from application of 
similar modeling techniques to industrial plants. Our 
modeling framework has been based on the results of 
ongoing collaboration of ABB and MathCore, [11] 
describes an early application of related methods. 
We have presented a graphical modeling framework 
and a procedure to directly translate graphical mod-
els into optimization problems. We have collected 
some evidence that, for formulating the optimization 
problems, it is favorable for speed and robustness to 
realize as few variables as possible. 
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