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Abstract

Modelica provides intuitive constructs to create and

group  model definitions.  However,  models  them-

selves do not  compose. In other words, the connec-

tion  of  type-compatible  and  locally  balanced  sub-

models  does not  generally yield  a  valid (e.g.,  bal-

anced,  structurally  non-singular)  model.  Starting

from simple examples of such invalid models (result-

ing from commonly encountered situations when us-

ing Modelica), this paper explains how those prob-

lems could be avoided by introducing a safer notion

of physical connector, similar in some aspects to the

VHDL-AMS notion of terminal. An extension of the

notion  of  connection is  also  presented,  providing

new  opportunities  to  make  efficient  use  of  ideal

models in Modelica.

Keywords:  model  composition;  high-level  physical

connector; effort variable; flow variable; connection

graph; effort graph; flow graph

1 Introduction

A  commonly  encountered  situation  in  Modelica

when defining models by connection of submodels

representing well-identified part of the whole design

is that, even if each submodel has been checked for

the absence of structural  inconsistency, there  is no

guarantee that the result is itself structurally consis-

tent.  One  may  argue  that  this  situation  is  normal

since some combinations of models are “not physi-

cal”.  However,  in the acausal  modeling world,  we

know that one has to be careful about the “not physi-

cal” argument:  for instance,  “high-index” problems

also are “not physical” from a certain point of view.

But  every  experienced  Modelica  user  knows  that

models  yielding systems  having  non-minimal  state

can be given a meaning, and the result of accepting

those models  does  not  make Modelica an  “every-

thing runs anyway” simulation language: models still

have well-defined  semantics  and  Modelica  can  be

used to express hard problems directly, without need

for user assistance.

We claim that, given a proper notion of model com-

position (by generalizing  the semantics  of  connec-

tions), we can, as in the case of models having non-

minimal state mentioned above, give a sound mean-

ing to a larger class of assemblies of type-compatible

Modelica submodels.  And fortunately  the result  is

still not an “everything runs anyway” simulation lan-

guage, but a more powerful one, where new kinds of

models can be easily defined, offering Modelica new

valuable possibilities.

2 Modelica modeling annoyances

Reading the documentation of the Modelica Standard

Library reveals implicit assumptions made here and

there,  leading  to  difficulties  when  one  has  to  use

models in a given discipline. Let's  consider for  in-

stance the Electrical  library1:  in the documentation

we  can  read  this  definition  of  Modelica.Electri-

cal.Analog.Basic.Ground:

“Ground of an electrical circuit. The potential at the

ground node2 is zero. Every electrical circuit has to

contain at least one ground object.”

The last  sentence is  rather  confusing  for  the new-

comer: why should every electrical model contain a

“ground node”? After all, we all remember having in

the  past  built  paper-and-pencil  electrical  circuits

without ground but for which it was possible to at-

tribute  unambiguously  a  meaning.  Worse,  the sen-

tence seems to imply that sometimes more than one

ground submodel has to be used: how many exactly

for a given problem? And where to place them on the

circuit? Let's make some experiments...

1 In the present paper, we will focus on the electrical do-

main,  because  models  are  often  simple  yet  general

enough to illustrate our thesis.

2 Notice the use of “node”.



2.1 A first example

Sometimes using Modelica results in frustrating ex-

periences for the newcomer: even a simple R circuit

may not simulate! Figure 1 below shows the diagram

of such a circuit built under Scicos3:

Figure 1: A naive R circuit

The  system  seems  to  be  well  defined:  a  voltage

source imposes a voltage difference between the pins

of  a  resistor  and  the  resistor  imposes  the  current

flowing into the circuit.  We can  verify  that  by in-

specting the equivalent “flat” model that, according

to Modelica semantics, is:

model RCircuit
  Real src.p.v;
  Real src.p.i;
  Real src.n.v;
  Real src.n.i;
  Real src.v;
  Real src.i;
  Real res.p.v;
  Real res.p.i;
  Real res.n.v;
  Real res.n.i;
  Real res.v;
  Real res.i;
equation // generated by Source
  src.v = src.p.v - src.n.v;
  src.p.i + src.n.i = 0;
  src.i = src.p.i;
  src.v = 220 * sin(314.15 * time);
equation // generated by Resistor
  res.v = res.p.v - res.n.v;
  res.p.i + res.n.i = 0;
  res.i = res.p.i;
  res.v = 1000 * res.i;
equation // connection equations
  src.n.v = res.n.v;
  res.p.v = src.p.v;
  src.n.i + res.n.i = 0;
  res.p.i + src.p.i = 0;

3 Freely available modeling tool with Modelica capabili-

ties (http://www.scicos.org).

end Rcircuit;

That system captures the required constraints. Indeed

from:

src.v = src.p.v - src.n.v;
res.v = res.p.v - res.n.v;
src.n.v = res.n.v;
res.p.v = src.p.v;

we deduce, as expected, that:

src.v = res.v;

And then, from:

res.v = 1000 * res.i;
src.v = 220 * sin(314.15 * time);

we found that:

res.i = 0.220 * sin(314.15 * time);

Then by exploiting:

res.i = res.p.i;
res.p.i + src.p.i = 0;
src.i = src.p.i;

we deduce that:

src.i = -res.i;

Everything seems fine... However the simulation of

that simple model fails miserably. Why? The careful

reader may have noticed that, in order to resolve the

above system for the “variables of interest” (src.v,

res.v, src.i and res.i), we did not use all the

constraints.  If  we  would  have  done  so,  we  would

have found that the unused constraints:

src.n.i + res.n.i = 0;
src.p.i + src.n.i = 0;
res.p.i + res.n.i = 0;

coupled with the fact that:

res.i = res.p.i;
src.i = src.p.i;

would have lead to an over-constrained (but consis-

tent) system of equations having five equations and

only four unknowns. Also, we did not solve the sys-

tem  for  all  the  variables:  src.p.v,  src.n.v,

res.p.v and  res.n.v remain  undetermined.

Trying to determine their value leads to the opposite

problem we encountered while solving for the flow

variables: the subsystem is under-constrained.

From the mathematical  analysis point of view, our

system  has  a  singular  jacobian  matrix.  However,

that singularity is not the result of unfortunate values

taken by the coefficients of the matrix: even the inci-

dence matrix4 of the system is singular.

4 A matrix having the same size as the jacobian matrix,

and whose coefficients indicate eventual contributions

of each variable to the corresponding jacobian matrix



Like many other newcomers the user that  built the

model  on  Figure  1 would  probably  be  said  that

she/he has overlooked the advice given in the docu-

mentation  of   Modelica.Electrical.Analog.Basic.-

Ground: indeed,  adding  a  ground submodel  to  the

circuit would have saved the situation by introducing

the missing voltage equations and one degree of free-

dom for the current needed for the calculation of all

the absolute voltages (that  we don't  need to know)

and “outgoing currents” (that we don't need to know

too).

Things learned from that error are:

� using Modelica libraries implies learning (some-

times implicit) rules that are not enforced at the

language level

� Modelica forces users to give equations to com-

pute unneeded quantities

2.2 Ideal models

Another look at the documentation that comes with

the  Electrical  library  reveals  that  the  ground  sub-

model is not the only one that carries out structural

modeling assumptions. For instance, the description

of  Modelica.Electrical.Analog.Ideal.IdealOpen-

ingSwitch includes the following warning:

“In order to prevent singularities during switching,

the opened switch has a (very low) conductance Goff

and the closed switch has a  (very low) resistance

Ron. The limiting case is also allowed, i.e., the resis-

tance Ron of the closed switch could be exactly zero

and the conductance Goff of the open switch could

be also exactly zero. Note, there are circuits, where

a description with zero Ron or zero Goff is not possi-

ble.”

It is legitimate to ask oneself what is a low conduc-

tance (resp.  low resistance).  Also, which are those

circuits that disallow zero Ron and/or zero Roff?

The difficulty when one has to determine the appro-

priate conductance (resp. resistance) of a nearly-ideal

opening switch is that the answer depends both on

the circuit itself and on the compiler/solver pair.

Consider a model having several switches in parallel

(for instance, a model of a fault-tolerant circuit in a

nuclear  plant):  it  is  well-known  that  the  two-pin

model equivalent to those switches put together is a

variable  resistor  whose  resistance  is  given  by  the

product of the variable resistances of the individual

switches  divided  by  the  sum  of  those  same  resis-

coefficient: zero indicates no contribution and one in-

dicates a (possibly null) contribution.

tances. It follows that small (resp. big) values of the

individual resistances may lead to tiny (resp. huge)

values  for  the resistance of the equivalent  two-pin

model. This implies that for large electrical models,

where one cannot predict the sequences of openings/

closings of switches, it is nearly impossible to deter-

mine  with  a  high  degree of  confidence  a  suitable

value for the resistances of the switches, even if one

got the complete source code describing the circuit

model.

Concerning  circuits  where  a  description  with  zero

Ron or zero Goff is not possible, experimenting a lit-

tle with the language rapidly convinces us that  the

connection of the graph of linked model instances is

a key property, and it brings us back to the problem

of effort reference depicted in section 2.1: each con-

nected  component of  a  circuit  has  to  contain  one

Ground instance. Consider the following circuit:

Figure 2: A circuit with switches

In  this  circuit,  the  two  coupled  opening  switches

control the connection of two subcircuits: when the

switches  are  closed  the  capacitor  is  charged,  and

when  the  switches  are  opened,  the  capacitor  dis-

charges itself through the resistor connected in paral-

lel with it.

What  happens  if  we  use  ideal  switches?  If  both

switches are opened, we get two subcircuits, one of

them having no  Ground instance attached. We are

then in the same situation as depicted in Figure 1: the

solver fails due to the structurally singular jacobian

matrix. But if we add a Ground instance as in Fig-

ure 3 below, the simulation can be run... until both

switches are closed, in which case we have a con-

nected graph of model instances with two effort ref-



erences. Removing the added Ground instance and

forcing  the  switches  to  remain  closed  allows  the

model  to  be  simulated.  So  we  are  in  a  situation

where, in order to be able to simulate our model, we

have either to put or to remove a  Ground instance

from  the  circuit,  depending  on  the  state  of  the

switches.

Figure 3: A modified version of the circuit with switches

The conclusion from experiments with ideal models

could be that one should avoid using them because

they lead to under- and over-constrained subsystems

of equations. This is not the correct conclusion in our

opinion: we think  that  ideal  models  are  extremely

useful in some situations (e.g., where one needs to

save computation  effort  for  instance)  and  that  the

modeling language should be able to properly handle

them by yielding simulation code that  conforms to

our expectations.

2.3 Connection variables

Note:  Without  loss  of  generality,  we  deliberately

consider here the  simple pattern  of  a  main  model

built out of submodels connected together. Submod-

els themselves are supposed to contain only simple

equations  (i.e.,  equalities).  Indeed,  the  purpose  of

this paper is not to discuss multiple ways to build

Modelica models but to illustrate problems with the

current approach,  based  on use of  first-class con-

nection variables.

Information exchange between models in Modelica

is  usually  performed  by  means  of  connectors and

connections. Connectors are aggregations of connec-

tion variables, divided into  flow and  potential vari-

ables. The connection of several compatible connec-

tors expresses constraints between connection vari-

ables that match:

� values of potential variables have to be equal

� values of flow variables have to sum to zero

A special case exists for unconnected connectors:

� values of potential variables are not constrained

� values of flow variables have to be zero

From the outside of submodels point of view, Mod-

elica provides a rather high-level construct (connec-

tion  equations)  to  express  connections  of  models

without  having  to  manipulate  connection  variables

directly. That approach offers several advantages:

� the code reflects the topology of the model, so

the code is easy to understand

� it  is  possible to add a  new branch to  a  model

without having to worry about the consequences

on the new connection constraints, so the code is

easy to extend

� it is impossible to break fundamental invariants

attached to both kinds of connection  variables,

so the code is robust

In contrast, from the inside of  submodels point  of

view, things are not as simple and clear: users have

to manipulate connection variables directly, and, as a

consequence, nothing prevents them to violate fun-

damental  invariants  such  as  flow  preservation.

Worse: the compiler has no way to prove that models

preserve  those  invariants  since,  inside  submodels,

everything is ultimately an ordinary equation.

That situation is a bit odd: after all, why not having

the counterpart of connection equations inside sub-

models? Having a construct that would handle con-

nection variables  automatically the way  connect

does outside submodels not only would help users to

write  correct  (and  machine-checkable)  models,  but

also would lead to more general models. Indeed, the

fundamental  problem with  the  connection  variable

approach is that  it  depends on the assumption that

connection variables always exist in the sense that

there is always enough constraints in the model to

define  all  of  them.  That  assumption  is  false,  as

demonstrated in the previous sections, and the goal

of ground-like models (to be provided by users!) is

precisely  to  compensate  the  lack of  potential  con-

straints and the excess of flow constraints that arise

naturally in connection variable-based semantics.

At this point, it is legitimate to ask ourselves why not

simply make connection variables second-class citi-

zens of the language and let higher-level constructs



directly deal with them. Indeed, this would be a solu-

tion:  if  for  instance  the  compiler  would  introduce

connection variables on demand (i.e., just  as many

connection variables as necessary to solve the prob-

lem  for  variables  of  interest)  we  would  avoid  the

problems  encountered  so  far.  But  let's  think  a  bit

more about those connection variables: what kind of

information do they carry under the assumption that

you can't directly access them? The answer is rather

simple:  nothing meaningful for  the user.  In  conse-

quence, the thesis we develop in this paper goes even

further: we simply advocate a language with no con-

nection variables at all in the physical domain.

3 Proposal for an enhanced Modelica

approach

3.1 The example of VHDL-AMS

Several modeling languages already adopted a theo-

retical model with no connection variables5. Among

them, VHDL-AMS[2] is probably the most famous

one in the Modelica community. In this section, we

present an  quick overview of the way VHDL-AMS

handles connection of analog submodels.

VHDL-AMS defines terminals to represent physical

connection points (the equivalent of Modelica con-

nectors,  in  the  analog  domain).  A  terminal  is  de-

clared to be of a given  nature, i.e.,  energy domain.

Here is an example of declaration of an electrical na-

ture:

subtype voltage is real;
subtype current is real;
nature electrical is
  voltage across
  current through
  ground reference;

The first two lines are just for convenience: they de-

fine two subtypes of real (the equivalent of Model-

ica's Real type) used to represent voltages and cur-

rents, respectively. More interesting is the declara-

tion of electrical:

� voltage across declares the across type as-

sociated with electrical

� current through declares the through type

associated with electrical

5 Simscape, from The MathWorksTM, offers an interme-

diate level of abstraction (connection variables are vis-

ible as port attributes) but users are strongly encour-

aged not to use them directly.

� ground reference names the reference ter-

minal, a special terminal that holds the reference

potential associated with electrical

We can observe that no name is introduced for nei-

ther  the  across  type nor  the  through  type.  Only

ground,  the name of the  reference terminal, is in-

troduced  by  the  definition  of  electrical:  in

VHDL-AMS  there  is  no  need  to  introduce  any

ground submodel since the ground is a connection

point, not a submodel6.

Natures can be used to define terminals using the fol-

lowing syntax:

terminal p, n: electrical;

The above line declares two terminals p and n hav-

ing electrical nature. How do we access across

and through values held by the terminals in VHDL-

AMS?  Here  is  the  trick:  we  cannot.  As  written

above, terminals only represent physical connection

points and, as such, they do not stand for placehold-

ers for any kind of  connection variables. The only

way offered  by  VHDL-AMS to  access  across  and

through quantities inside the equivalent of submodels

is by means of branch quantity declarations:

quantity

  v across
  i through
  p to n;
The above declaration reads as follow:

� v across declares a variable having the across

type of p and n, that holds the value of the volt-

age difference between p and n

� i  through declares  a  variable  having  the

through type of p and n, that holds the value of

the current that flows from p to n

We can notice in the declaration above that nothing

requires the existence of any kind of connection vari-

able, as expected. Indeed, the declaration really just

states that:

� the across quantity between p and n can be ref-

ered to as “v”

� the through quantity flowing from p to n can be

refered to as “i”

Branch quantity declarations coupled with port maps

(the equivalent  of  Modelica's  connection equations

in VHDL-AMS) define a  connection  graph that  is

used to elaborate the missing constraints in VHDL-

AMS  models.  Which  advantages  do  they  provide

over the Modelica approach? First, inside submodels,

6 Remember footnote 2.



we get the conciseness and the clarity already offered

outside submodels in Modelica by means of connec-

tion equations: the code is easy to read, easy to main-

tain and more robust  (compare the branch quantity

declaration  given  above  in  VHDL-AMS  with  the

definition of partial “two-pin” submodels in Model-

ica  libraries).  Second  (and  the  most  important  re-

garding the subject  of  this  paper),  thanks  to  those

high-level constructs,  a VHDL-AMS compiler has

a global view of the whole connection graph: 

� concerning  potentials:  where  a  Modelica  com-

piler only knows locally that absolute potentials

in a  connection set  should be equal,  a  VHDL-

AMS compiler also knows which loop(s) of the

connection graph a given potential contributes to

(this allows circuits as in Figure 1 to be success-

fully compiled)

� concerning  flows:  where  a  Modelica  compiler

only knows what happens locally in a connection

set,  a  VHDL-AMS  compiler  also  knows  how

flows traverse submodels (since, inside submod-

els,  flows are  explicitly declared as  such)  and,

consequently, how flows traverse the whole con-

nection graph.

The strength of VHDL-AMS regarding analog mod-

eling comes precisely from that global view of the

connection  graph:  a  VHDL-AMS  compiler  can

fully apply both Kirchhoff laws7 to the whole sys-

tem whereas a Modelica compiler can only apply the

first one, and moreover, only partially (actually, to

each connection set). It follows that a VHDL-AMS

compiler  can provide the exact number of missing

constraints to solve the whole system without intro-

ducing any connection variable and without resorting

to  the  “manual  adjustments”  (e.g.,  positioning

ground-like submodels) required by Modelica.

Undeniably,  VHDL-AMS  outperforms  Modelica

here.  Alas,  there are  still  some limitations:  models

such as depicted in Figure 3 still remain impossible

to define... The reason is that VHDL-AMS require-

ments for solvability (see [2]) impose one equation

to be present in ideal switches, so users have to state

explicitly that  the current flowing through the sub-

model is  zero when in “open” mode8.  Global flow

7 The  first  law,  also  called  Kirchhoff's  junction  rule,

states that the directed sum of the flows at every node

of a circuit is zero. The second law, also called Kirch-

hoff's loop (or mesh) rule, states that the directed sum

of the efforts around any closed circuit is zero.

8 VHDL-AMS features  generate statements to generate

constraints  conditionally,  so  one  might  hope  to  use

analysis finds that our VHDL-AMS model with two

switches is well-structured whereas two constraints

may dynamically impose the value of the flow on the

same branch of the circuit. We are in the same situa-

tion encountered in Modelica while solving the sim-

ple R circuit: under some switching conditions, the

incidence matrix of the system is singular.

We  conclude  from those  observations  that  having

high-level  constructs  such  as  VHDL-AMS  branch

quantity  declarations  in  an  acausal  modeling  lan-

guage  greatly  enhances  expressiveness.  However,

that approach, even if better than what Modelica cur-

rently provides, does not suffice to resolve all the is-

sues. In the next sections, starting from a variant of

branch quantity declarations seen above, we propose

an  enhancement over  VHDL-AMS, that  solves the

issues  encountered  in  models  involving  ideal  sub-

models.

3.2 High-level physical connectors

In order to benefit from the full power of global con-

nection graph analysis in Modelica, we need to be

able to define the equivalent of VHDL-AMS termi-

nals and branch quantities. In the case of electrical

modeling, it would give something like:

type Voltage = Real(unit="V");
type Current = Real(unit="A");
connector Pin
  across Voltage;
  through Current;
end Pin;

Several  comments  need  to  be  made  at  this  point.

First,  unlike in  VHDL-AMS,  we  do  not  begin  by

defining a nature to be subsequently used in terminal

or branch quantity declaration. Instead, we define di-

rectly a  high-level physical connector for the physi-

cal  domain of interest. This avoids introducing too

many new language constructs (and keywords) while

still remaining general enough, as we will see below.

Second, we impose that any high-level physical con-

nector  contains  exactly  one  across  type  definition

and its associated through type definition. It is how-

ever possible to add traditional connection variables,

parameters, etc., in the same connector definition, in

the  pure Modelica spirit.  Also,  high-level physical

connectors can be aggregated into enclosing connec-

them here... Alas, the switching condition is dynamic

in our case and generate statements are limited to static

cases. Also, we don't know, at submodel creation time,

under which condition constraints have to be present

(or not).



tors,  like  any  other  kind  of  Modelica  connector.

Third, the careful reader may have noticed that we

did not define any  reference connector when defin-

ing  Pin above.  The main  reason is that  we don't

want to pollute name spaces with new names, espe-

cially when context always permits to disambiguate

the code. Indeed, references to the reference connec-

tor always occur in a connection statement. For obvi-

ous reasons, we impose that at least one of the con-

nected entities has to be an instance of a compatible

connector type9 other than the reference connector.

In consequence, we propose that the keyword ref-

erence, used in any connection statement in place

of a connector reference, represents the ad-hoc type-

compatible reference connector.

3.3 Connections and effort/flow variables

In  order  to  conveniently  express  connections  in  a

natural Modelica style, we propose the usage of the

keyword connect to be extended in two ways:

� applied to high-level physical connectors10, it is

used  to  express  that  its  arguments  have to  be

considered  as  the  same  physical  connection

point, or node

� applied to more than two connector references, it

enables users to enhance readability of connec-

tion statements by allowing local connection sets

to be expressed directly11

We also propose to declare the equivalent of branch

quantities by means of two separate constructs:

across(v, p, n);
through(i, p, n);

The first line reads “v denotes the potential differ-

ence between p and n”: it is used to declare an effort

variable (the first argument) holding the effort  dif-

ference measured between the “plus” and  “minus”

connectors  denoted  respectively  by  its  second  and

third arguments. Notice that  we do not declare the

type of v: instead we impose that at least one of the

two connector arguments to  across has to refer-

ence a user-defined instance of a high-level physical

connector, so the type can be deduced from context

(it is of course the across type of the corresponding

9 Remember  that  Modelica  features  a  structural type

system.

10 Of  course  having  compatible  types,  which  actually

means “same types” here due to type invariance im-

posed by acausal semantics.

11 This  should  not  preclude connection  sets to be  split

over several connection statements, however.

high-level  physical  connector  type).  Similarly  to

across,  through introduces a new variable, but

in that  case the introduced  flow variable holds the

flow quantity flowing from the “plus” connector to

the “minus” connector12.

3.4 Sources and sensors

Our theoretical model is not yet expressive enough:

pure sources and pure sensors are missing. The rai-

son d'être of those entities is to enforce conceptual

decoupling of the effort/flow world from the signal

world by enabling users to express input/output con-

straints between both worlds. This eases documenta-

tion, model analysis and debugging.

Sources and sensors are  defined by means of  tees.

The proposed syntax for sources, or input tees, is:

across(input v_in, p, n);
through(input i_in, p, n);

The two lines above introduce respectively and effort

source  and  a  flow  source.  The  corresponding

effort/flow is constrained from the outside world by

means of the type-compatible input connector signal

whose name follows  input.  Similarly,  the syntax

for sensors, or output tees, is:

across(output v_out, p, n);
through(output i_out, p, n);

Unsurprisingly,  the  two  lines  above  introduce  re-

spectively an  effort  sensor  and a  flow sensor.  The

type-compatible  output  connector  signal  is  con-

strained by the corresponding effort/flow.

The theoretical model introduced here differs from

VHDL-AMS's one: in particular, we allow the decla-

ration of pure effort  sources, whereas VHDL-AMS

forbids them13. At this point, we have just defined a

variant (with minor enhancements) of what VHDL-

AMS already proposes, but we still have to solve the

issues encountered with the use of ideal submodels.

3.5 Conditional connections

We have seen  in  previous sections that submodels

such as ideal switches introduce dynamic structural

singularities (i.e., the incidence matrix of the system

12 Notice that the decoupling of across and through vari-

able declarations enables decoupled sign conventions.

13 That limitation of VHDL-AMS probably has its roots

in the way  structural sets of equations (i.e.,  VHDL-

AMS's  equivalent  of  connection  equations)  are  re-

quired to be elaborated: by means of an application of

the Modified Nodal Analysis (see [3]).



becomes  singular  under  some  circumstances  that

happen  at  unpredictable  times  during  simulation).

This  suggests  that  a  possible  way  to  circumvent

those problems could be to dynamically adjust  the

constraints to be solved instead of trying to hide nu-

merical problems into equations that, as a result, in-

troduce stiffnesses and numerical singularities into

systems of equations. We then propose here a gener-

alization of connection equations called  conditional

connections and explain why this kind of construct

can be used to solve issues encountered so far.

Conditional  connections  are  just  guarded connect

statements in Modelica programs: syntactically, we

simply  allow  connect  statements  to  appear  in  a

branch of  a  conditional statement14.  The semantics

are naturally generalized to allow dynamic changes

in the connection graph of a model: whenever a con-

ditional construct activates a connect statement dur-

ing  simulation,  the  connection  constraints  get  up-

dated  in  accordance.  Here is the code of  an  ideal

switch using conditional connections:

model Switch
  Pin p, n;
  input Boolean on;
equation

  if on then
    connect(p, n);
  end if;
end Switch;

It is interesting to notice that the “if” clause above is

not “balanced”. Indeed, its only purpose is to specify

conditions under which the topology of the physical

connection graph of models containing instances of

Switch changes15.

It is straightforward to see why conditional connec-

tions solve issues encountered with the use of ideal

switches. Indeed, models such as Switch above do

introduce equations only on demand16, to satisfy both

Kirchhoff's  laws:  we  have  just  defined  a  dynamic

version of an elaboration method à la VHDL-AMS.

It  follows  that,  for  instance,  having  several  closed

14 When and if clauses should be equally considered here.

But  due to  the lack of  a  rigorous  hybrid  theoretical

model in Modelica currently, we will focus on contin-

uous-time equations and if clauses only in the focus of

this paper.

15 After all, since our aim is to equip Modelica with com-

posable submodels, it is not so surprising that compo-

sition statements themselves do not require balancing

constraints!

16 In particular, a model composed of ideal switches only

does not contains any variable nor equation.

switches in parallel or several open switches on the

same branch of a circuit is no longer a problem, pro-

vided we know how to cope with more general con-

nection  constraints.  An  elaboration  algorithm  that

satisfies those requirements is presented in the next

section.

4 Generation of connection equations

4.1 Physical connection graphs,  across graphs

and flow graphs

Across  declarations  and  through  declarations  not

only introduce a new identifiers, they also introduce

new edges in a structure called a physical connection

graph of the model. That directed graph is built as

follow:

� vertices  represent  connection sets  of  high-level

physical connectors17 of the original model

� edges  represent  either  across  declarations  or

through declarations of the original  model.  Di-

rection  information  is  preserved: edges  are  di-

rected from the connection set which the positive

high-level physical  connector belongs to to the

connection  set  which  the  negative  high-level

physical belongs to. Also, causality is preserved,

i.e.,  input/output  information  associated  with

tees is represented in the graph

It  is  important  to  notice  that  physical  connection

graphs are not explicit in the original model struc-

ture. However, they can be seen as a kind of dual of

the original model structure considered as a graph,

for a given configuration of conditional connections:

vertices in the original model (i.e., submodels con-

taining  only  simple  equations)  are  used  to  build

edges  in  the physical  connection  graph,  and,  con-

versely, edges in the original model (introduced by

means of connect) are used to build vertices in the

physical connection graph. Notice also that we asso-

ciate exactly one physical connection graph with a

model for each configuration of the conditional con-

nections.  This  implies  that  physical  connection

graphs are generally disconnected: indeed, the asso-

ciated  model  may  eventually  contain  transformers

and gyrators, and make use of several physical do-

mains, for example.

A physical connection graph can be seen as the su-

perimposition of two simpler graphs having the same

17 The reference connector is view as an ordinary con-

nector here.



vertices: the effort graph and the flow graph. Edges

of  the effort  (resp.,  flow)  graph  represent  across

(resp.,  through)  declarations of  the original  model.

Figure 4 below shows a  representation of the con-

nection graph corresponding to the model in  Figure

1.

Figure 4: a simple connection graph

The effort graph is represented at the top of the fig-

ure and the flow graph at the bottom. Blue vertices

represent connection sets (shared between both the

effort graph and the flow graph). Directed edges be-

tween two blue vertices represent across or flow def-

initions,  depending  on  the  nature  of  the  subgraph

they  belong to.  For  information,  relations  between

coupled effort and flow variables are represented by

dashed arrow-ended curves labelled with the corre-

sponding explicit equations.

4.2 Elaboration algorithm

The elaboration algorithm we propose in this paper

operates by determining effort constraints and flow

constraints independently. Notice that since we want

to  enable  dynamic changes  in  the topology of  the

connection graph associated with a model, the algo-

rithm  should  be  applied  to  each  configuration  re-

quired by the simulation18.

Effort constraints are determined this way:

� for  each  connected  component  of  the  effort

graph, perform a depth-first traversal with mark-

ing

18 Typically, each time the branch of a conditional equa-

tion  becomes  active.  But  a  simulation  environment

may optimize simulation time by anticipating configu-

rations, by caching old configurations, etc. Those opti-

mization strategies are beyond the scope of this paper.

� for each detected loop, generate the sum-to-

zero of effort variables along the loop by fol-

lowing this sign convention: effort variables

associated with edges oriented in the direc-

tion of the loop traversal are counted as posi-

tive and the other ones as negative.

Flow constraints are determined this way:

� for each connected component of the flow graph,

perform a depth-first traversal with marking

� for each detected loop with at least two ver-

tices19,  generate,  if  not  already done20,  the

sum-to-zero of flow variables at each vertex

along the loop until all the variables of the

loop have been used at least once. The fol-

lowing sign convention is used for summa-

tion: flow variables associated with incom-

ing  edges  are  counted  as  positive  and  the

other ones as negative

� generate  equations  constraining  flow  variables

associated with edges that do not belong to any

loop to have a null value.

The proof  of  the algorithm is omited but  we give

here the general idea behind it:

� a loop of length n where each pair of high-level

physical connectors is connected exactly by one

across definition  and  one through definition  in

the  physical  connection  graph  yields  1 effort

constraint (the directed sum of  effort variables

equals zero) and  n - 1 flow constraints (the di-

rected sum of flow variables is generated at each

vertex but one21)

� it follows that the final system of equations has

2n unknowns (n effort variables and n flow vari-

ables)  and  2n equations (n equations explicitly

given by the user, as required by balancing con-

straints,  and  n equations  automatically  intro-

duced by the elaboration algorithm).

5 Example

In order to illustrate the power of high-level physical

connectors, let's try to define the model depicted in

Figure 2. We will reuse the definitions of  Pin and

19 Loops with only one node should not yield flow con-

straints.

20 Since the same vertex may belong to several loops.

21 Flow variables associated with the ignored vertex have

been  already  used  in  equations  associated  with  its

neighbors, so no equation is generated for that vertex.



Switch previously introduced in  3.2 and  3.5,  re-

spectively. The model also requires the definition of

a voltage source, a resistor and a capacitor. They are

given here:

model VoltageSource
  constant Real PI = acos(-1);
  parameter Real V0;
  Pin p, n;
  across(v, p, n);
  through(i, p, n);
equation

  v = V0 * sin(2 * PI * 50 * time);
end VoltageSource;

model Resistor
  parameter Real R;
  Pin p, n;
  across(v, p, n);
  through(i, p, n);
equation

  v = R * i;
end Resistor;

model Capacitor
  parameter Real C;
  Pin p, n;
  across(v, p, n);
  through(i, p, n);
equation

  C * der(v) = i;
end Capacitor;

Notice the conciseness of those definitions, thanks to

the use of high-level physical connectors: no inheri-

tance  from  an  abstract  TwoPin class  is  needed.

Also, the respective roles of  v and  i are explicit in

the code: this greatly helps understanding the physics

behind  submodels.  The  VoltageSource sub-

model deserves a special comment: despite the ab-

sence of i in the equation of the submodel, we have

to define it because otherwise it would make the sub-

model a pure voltage source and, as a consequence,

the current would not traverse it. Since we want a

two-pin-like  submodel,  we  have  to  define  the

effort/flow pair of variables.

Just for fun, we can also define a (useless) ground

submodel:

model Ground
  Pin p;
equation

  connect(p, reference);
end Ground;

Notice that, contrary to Modelica's traditional ground

submodel, our ground submodel does not introduce

any  explicit  equation  (nor  any  variable  at  all)  in

models into which it is used.

The circuit (with logic of switches omited) can then

be defined as:

model Circuit
  Ground gnd;
  VoltageSource src(V0=50);
  Resistor res1(R=1000);
  Resistor res2(R=100);
  Capacitor cap(C=0.01);
  Switch sw1(on=...), sw2(on=...);
  ...
equation

  connect(gnd.p, src.p, res1.p);
  connect(src.n, sw1.p);
  connect(sw1.n, cap.p, res2.p);
  connect(cap.n, res2.n, sw2.p);
  connect(sw2.n, res1.n);
  ...
end Circuit;

We will study the two possible configurations where,

respectively,  both  switches  are  open  and  both

switches are closed.

The first configuration yields the physical connection

graph depicted in  Figure 5 below. Both effort  and

flow graph have the same topology because we only

used  two-pin-like  submodels  to  hold  user-defined

equations.

Figure  5:  physical  connection  graph  corresponding  to

model in Figure 2 in "open" mode



Applying the elaboration  algorithm to the physical

connection graph gives for  instance (depending on

the order into which vertices are examined):

cap.v - res2.v = 0;

src.i = 0;

res1.i = 0;

cap.i + res2.i = 0;

Only one effort constraint has been created, since the

effort  graph  only  has  one  loop.  Three  flow  con-

straints have been created: two for the the leftmost

subgraph (which contains no loop) and one for the

rightmost subgraph (which is a loop with two ver-

tices). We finally get a system with eight unknowns

and eight equations once the four explicit equations

are merged with the automatically generated ones.

The second configuration yields the physical connec-

tion graph depicted in Figure 6 below.

Figure  6:  physical  connection  graph  corresponding  to

model in Figure 2 in "closed" mode

Applied  to  that  graph,  our  elaboration  algorithm

gives for instance:

res1.v - res2.v - src.v = 0;

res2.v - cap.v = 0;

-src.i - res1.i = 0;

cap.i + res2.i + res1.i = 0;

Again,  a  system  with  eight  unknowns  and  eight

equations is finally produced. Two effort constraints

and two flow constraints have been generated, one

for each loop in both the effort graph and the flow

graph.

It is interesting to notice that in both cases only eight

equations are  produced where the equivalent tradi-

tional Modelica program would  have produced 38

equations!  (each  two-pin-like  submodel  introduces

six variables and the ground submodel, two). Also,

equations generated by our algorithm always corre-

spond to physical properties of the model: instead of

obfuscating the final system of equations like tradi-

tional connection equations do, equations generated

by our algorithm may be helpful to users to analyse

their models, and, eventually, to debug them.

6 Conclusion

In this paper, we have proposed a solution to enforce

composability of Modelica submodels: any composi-

tion of (possibly ideal) submodels that is physically

sound now  yields  a  non-singular  system  of  equa-

tions. Now it would be interesting to exploit the ad-

ditional  syntactic  information  offered  by  our  pro-

posal to better statically typecheck models: it should

help detecting errors more accurately than a solution

based on traditional Modelica connectors, especially

if coupled with a method that would take incidence

information  into  account22.  Also,  and  more  impor-

tantly, we hope that, coupled with a rigorous hybrid

theoretical model, our proposal would serve as a ba-

sis to get rid of several special-purpose or composi-

tion-unfriendly  features  of  Modelica  designed  to

cope  with  limitations  in  expressiveness,  especially

the  recent  Stream proposal  but  also  the  Overcon-

strained  Connection-Based  Equation  Systems  pro-

posal,  among others23.  Another  interesting  applica-

tion would be a type system that would be powerful

enough to ensure true “plug compatibility”: separate

compilation  of  submodels  would  become  possible

and  intellectual  property  protection  would  directly

benefit from that.

22 Notice that explicit incidence information does not vi-

olate intellectual property!

23 As the first sentence of the Revised5 Report on the Al-

gorithmic  Language Scheme nicely says:  “Program-

ming languages should be designed not by piling fea-

ture on top of feature, but by removing the weaknesses

and restrictions that make additional features appear

necessary.”
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