
Module-Preserving Compilation of Modelica Models 

Dirk Zimmer 

Department of Computer Science, ETH Zurich 

CH-8092 Zurich, Switzerland 

dzimmer@inf.ethz.ch 

Abstract 

Large Modelica models pose serious problems for compi-

lation and simulation. The standard process for the compi-

lation of Modelica models is insufficient since it requires 

the flattening of the system and generates thereby overly 

large executables. In this paper we elaborate the concept 

of module-preserving compilation. This technique aims to 

generate more compact executables and thereby shall en-

able the simulation of very large systems in the future. To 

this end, we introduce an appropriate terminology and 

design a set of data structures and algorithms that enable 

the embedment of module preservation into the translation 

of Modelica models. This paper represents theoretical 

work only and aims to open up a fruitful discussion on this 

topic. Keywords: Flattening; Translation; Causalization. 

1 Motivation 

The object-oriented modeling paradigm of Modelica 

promotes a modular design of systems. Simple Mod-

elica models are thereby composed in order to form a 

complex, hierarchically structured top-model.  The 

individual submodels are mostly stated in declarative 

non-causal form. This is a prerequisite for their gen-

eral applicability. Whereas the declarative form ben-

efits the usability, it prevents the models from being 

directly “executed.” Hence, the models must be 

translated into a computationally feasible form (e.g. 

an executable program), mostly for the purpose of 

time integration.  
 

 
Figure 1: Compilation stages of Modelica code 

Figure 1 represents a common compilation scheme 

that is shared by typical Modelica translators like 

Dymola [3] or OpenModelica [4]. We see that 

Modelica models are getting instantiated in the mid-

dle stage of the compilation process. The instantia-

tion is carried out in a flattened form. This means 

that the hierarchic structure is destroyed and that the 

resulting system represents one large system of equa-

tions. 

The process of flattening benefits further tasks of the 

compilation process. First of all, it enables the re-

moval of alias variables (that mostly result from the 

objects’ interfaces) and thereby reduces the system 

size. The process of causalization is able to handle 

algebraic loops that extend over many different sub-

models. State selection and index reduction reduce 

the dimension for the numerical ODE solver. By 

these and other means the overall system can be sig-

nificantly simplified and the resulting code is com-

petitive to the best manually coded simulations. 

Unfortunately, the process of flattening also has its 

deficiencies. It gets problematic for very large sys-

tems. Since the model is always processed as a 

whole, it does hardly scale and gets increasingly in-

efficient for large models. Also the generated code 

starts to lack in quality. It gets overly large and con-

tains many redundant parts. 

To get a better understanding of the problem, let us 

look at an example. The Verification Package for 

Modelica Spice 2.1 [2] includes the model of a four 

bit adder (c.f. figure 2). Because it is modeled down 

to the layer of single bipolar junction transistors, the 

model is very detailed and indeed very large: it con-

tains in total 481’915 scalar equations. Dymola 

(v7.2) fails in the attempt to simulate this model. The 

translation needed almost 1 GB of RAM and finally 

generated an 88MB executable. Its simulation in 

Dymola failed in the simulation-environment. 

Whereas the final reason of breakdown is most prob-

ably a minor bug that could be corrected, we shall 

not overlook that there is a serious issue with very 

large models. This is by no means specific to Dy-

mola, it is a principal problem concerning the gen-

eral processing of languages like Modelica. 

Large models contain often a high degree of redun-

dancy, and the larger they get, the more redundant 

they typically are. This rule of thumb also applies to 

our example model. The four-bit adder contains 2 

two-bit adders. The two-bit adder contains 2 one-bit 

adders and each one-bit adder circuit contains 9 
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(a) four-bit adder (b) NAND (c) BJT 

Figure 2: Model diagram of the four bit adder and two of its components 

NANDs. The NAND gate itself consists in 4 bipolar 

junction transistors (BJTs) plus 3 diodes. Conse-

quently, the four-bit adder contains 36 NANDs, i.e., 

144 BJTs plus 108 diodes.  

On the modeling layer, this redundancy is not a prob-

lem, since the number of individual modules is far 

lower than the number of their corresponding in-

stances. On the computational level, all the hundreds 

of instances get flattened and corresponding code is 

generated for each of them. In direct consequence, 

the code gets large, bulky, and redundant.  

It is an evident question to ask: If hundreds of sub-

model instances share the same equations, can they 

not share (at least partly) the same code? And can 

this code be modularized in form of a function? It is 

the aim of this paper to examine how and when a 

given modularization on the modeling layer can be 

preserved and mapped to code modules in the final 

executable. This shall provide future benefits for 

both the speed of the translation and the size of the 

executable. 

2 Modules and their Representation 

Most readers will be very familiar with the typical 

process of module creation. It is mostly applied to a 

structure that occurs several times in a system. It can 

be described by 5 steps: 

1. Extract all the elements you want to put into 

your module from one occurrence of your struc-

ture. 

2. Determine all the variables that are part of your 

module, and separate this set of variables into 

two distinct sets: The set of local variables that 

occur in your module only and the set of inter-

face variables that are also being used elsewhere. 

3. Form an interface for your model given the cor-

responding set of interface variables. 

4. Replace all occurrences of your structure by in-

stances of your module (e.g. sub-model declara-

tions or function calls, respectively). 

5. Connect the interface of your module with the 

corresponding variables. 

This way of modularization can be applied to trans-

form code segments into functions but also to group 

clusters of equations into a Modelica model.  Hence 

modules are a common concept for both the source 

and target of a Modelica compiler. 

On the modeling layer, the modular design is given 

by the modeler. A module is represented by a Mode-

lica model and it consists essentially in an unordered 

set of equations. In order to form meaningful mod-

ules, the modeler aspires to create sub-models that 

form a semantic entity and offer a preferably small 

interface that wraps a more complex inner part.  

The target of the compilation is program code. That 

is an (ordered) list of statements. These statements 

are mostly computations of operators and value as-

signments. If several pieces of code share equivalent 

sub-lists of statements (again, disregarding the nam-

ing of variables), these statements can be modular-

ized. Such a code module is typically represented as 

a function. 

Module-preserving compilation aspires a mapping 

between the modules on the model level and the po-

tential modules on the code level. In concrete terms: 

how and when can a Modelica model or a part of it 

be translated into a function of an imperative pro-

gramming language? 

3 Entities of Modularization 

In principle, any arbitrary code segment can be mod-

ularized, but to gain any advantage, the subpart 

needs to occur frequently in the main code and it 

needs a feasible interface. One might attempt to find 

such suitable subparts in the flattened code by pat-

tern-finding algorithms, but this approach is hardly
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Figure 3: A causal block in different contexts with the corresponding code.  

promising since this is a computationally demanding 

task. It can be expected to fail for very large systems 

when modularization is needed the most. 

The hierarchic structure of the equation-based model 

gives us a priori information about those patterns that 

may occur frequently in the resulting code. In order 

to use this information, we have to know about the 

requirements for the translation of a sub-model into a 

function. 

A typical model in the Modelica library has a non-

causal interface with non-causal equations. Hence, 

many models (like the model of a mechanical rod) 

can be causalized in many different forms that all 

require a different code for the computation. Thus, 

code can only be shared for model instances of the 

same causality. 

However, thinking that causal models can be directly 

transformed into code, is misleading. Figure 3 (a) 

and (b) present a simple counterexample. The corre-

sponding code for the presented models is placed 

underneath the modeling diagrams. We see that the 

same causal block (blue) not only yields different 

code, also its code separates into two parts. Hence it 

cannot be expressed by a single function. 

The problem is that causality only gives rise to a par-

tial order, but the transformation into code requires 

an absolute order. The fact that the variable x is de-

termined by a and b and that y is determined by b 

and c does not say anything about the order between 

x and y. This might be stipulated by the remaining 

system as in (a) and (b), but it might be left for 

choosing as well as in (c).  

The causal relations between assignments are best 

expressed by a causality graph G(E,V). This is a di-

rected acyclic graph where the vertices VG corre-

spond to the assignments. The edges EG are formed 

by those pairs of assignments (s1, s2) where v is a 

variable of s2 and determined by s1. Examples of 

such causality graphs are placed beside the code 

segment in figure 3. 

Those assignments belonging to a certain model M 

induce a sub-graph GM of G. We are interested in a 

very specific form of sub-graphs:  

Definition 1: 

• A vertex-induced sub-graph G’ of G is called 

path-complete iff all paths in G between any ver-

tex pair (s1’, s2’) in G’ are also included in G’. 

Path-complete sub-graphs are of high interest to us 

because each one of them can be translated into a 

separate cohesive program segment and thereby can 

be modularized into a function.  

Any vertex-induced sub-graph GM can be decom-

posed into a set of path-complete sub-graphs {GE1, 

GE2, …}, but since there are many such decomposi-

tions, we need to specify further restrictions to derive 

a unique decomposition. First of all, we demand the 

decomposition to be minimal in the sense that the 

decomposition contains no pair (GEa, GEb) that can be 

merged to another path-complete sub-graph.  

Since G is a directed acyclic graph, any minimal de-

composition into path-complete sub-graphs is given 

an absolute order by G. There may now be vertices 

of GM that cannot be uniquely assigned to one of the 

decomposition’s sub-graphs. If we define these ver-



tices to be assigned to the sub-graph of the lowest 

order, we get a unique decomposition. We denote 

this as the busy, minimal decomposition into path-

complete sub-graphs. Fortunately, this decomposi-

tion can be derived incrementally, as will be de-

scribed in section 5.2. 

We recognize that the code for any model M may be 

split into several entities E1, E2, … that represent co-

hesive code segments and that such a decomposition 

into program segments can be uniquely determined. 

Thus, we define:  

Definitions 2 and 3: 

• A causal entity E of a model M represents a list 

of vertices of a sub-graph GE that results out of 

the busy, minimal decomposition of GM into pat-

complete sub-graphs. The order of the list E is 

partially determined by the underlying directed 

graph GE. 

•  A causal interface IE of a causal entity E repre-

sents a pair of variable sets. The first set contains 

the input variables that are formed by the ingo-

ing edges from G to the sub-graph GE. Corre-

spondingly, the second set is formed by the out-

going edges and represents the output variables. 

The causalization of a model can now be precisely 

defined by the causal signature: 

Definition 4: 

• The causal signature SM is a complete list of 

causal interfaces IE for all causal entities E be-

longing to a given model M. The list determines 

the order of the corresponding causal entities.  

For illustration, let us look at the causal signatures 

from Figure 3. Each model has a different one: 

(a) [ ({a, b},{x}) ,({c},{y}) ] 

(b) [ ({b, c},{y}) ,({a},{x}) ] 

(c) [ ({a, b, c}, {x, y}) ] 

We have seen that (a) and (b) require different code. 

They also have different causal signatures with dif-

ferent causal entities. We further recognize that each 

pair corresponds to a block of code, hence to a po-

tential function. Code that is generated for (c) shall 

not be used for (a) and (b), but not necessarily vice 

versa. Code for (a) and code for (b) would be usable 

also for (c). Thus, we define the terms sub- and su-

per-signature: 

Defintion 5:
 
 

• A causal signature SM is sub-signature of an-

other causal signature SM’ over the same 

model if SM can be transformed into SM’ by 

merging
1 

subsequent pairs of the list. SM’ is 

then defined as a super-signature of SM.
 
 

Example: The signature [({a, b, c}, {x, y})] from ex-

ample (c) is a super-signature for both (a) and (b).
 1
 

Sub-models that share the same causal entities can 

share the same code. The number of causal entities 

corresponds thereby to the number of separate code 

blocks that could be turned into functions. In order to 

reuse code efficiently, one may decide to replace the 

code of one causal entity by the code of one or sev-

eral entities that originate from a model instance that 

has a causal sub-signature.  

Example: If the causal signature of 2(a) occurs fre-

quently, the compiler may decide to create two code 

modules in form of the functions f1 and f2: 

function f1(a,b) 

 x := a*b; 

 return (x); 

end 

function f2(b,c) 

 y := b+c; 

 return (y); 

end 

 If the causal signature of 2(c) occurs only once, the 

corresponding code may now be formulated using 

these modules by the segment: 

  x := f1(a,b) 

  y := f2(b,c) 

4 Which entities shall be preserved? 

Let us look at the academic example of figure 4. It 

contains a lot of addition blocks and hence a com-

piler might be tempted to create a code module 

(function) for the block. However, this is obviously 

not a good idea. Modularization of the correspondent 

causal entity will decrease the performance and qual-

ity of the code in this case. 
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Figure 4: A bad example for remodularization 

The reason for this is that the modularization of a 

causal entity needs to provide its interface (in con-

crete terms: function parameters and return value). 

Once implemented, it is hardly possible to optimize 

across the interface, and hence the systems cannot be 

simplified. Auxiliary or alias variables cannot be 

                                                      
1
 Please regard: The merging of two causal entities corre-

sponds to the merging of its causal entities, and hence 

variables can get removed from the interfaces. 



removed out of the system. Furthermore, the simple 

additions are replaced by more costly function calls. 

We see that preserving modules per se does not im-

prove the code. It is a tool that demands proper ap-

plication. 

Modularization is not for free, it incurs additional 

cost. Memory is needed to define the interface of the 

function. Computational time is needed for the as-

signment of the interface values and the correspond-

ing function call.   

Thus, the modularization of causal entities is only 

meaningful, if the additional computational cost is 

marginal to the cost of the function and if the mem-

ory cost of the interface is compensated for by the 

memory savings that are attained by replacement of 

multiple instances through function calls. Let us 

therefore make a distinction between the inner and 

outer complexity of a model. 

4.1 Inner complexity of a module 

Definitions 6 and 7: 

• The inner computational complexity Ci,E of a 

causal entity E is the total amount of all memory 

assignments and basic computations from code 

that corresponds to E. 

• The inner data complexity Di,E is the total amount 

of local data that is required for those computa-

tion. 

Since both definitions for the inner complexity refer 

to the actual code, their estimates are dependent on 

the simplification mechanisms of the preceding 

compilation stages. 

Attaining a fair estimate for Di,E is actually unprob-

lematic. However, its complexity may depend on the 

modularization of potential sub-entities. Estimates 

for Ci,E, can be difficult to obtain when the number of 

computations is unsure, for instance, an iterative 

solver has to be applied in order to solve a non-linear 

equation system. Fortunately, it turns out that a de-

termination of Ci,E is not necessary. 

4.2 Outer complexity of a module 

Definitions 8 and 9: 

• The outer computational complexity Co,E of a 

module is the amount of all memory assignments 

and basic computations that refer to data of its 

interface and to data outside the module.  

• The outer data complexity Do,E of a module is the 

total amount of data in its interface, defined by 

IE. 

Knowing the interface of a potential code module 

means knowing about its outer complexity. How-

ever, the interface may contain more than intuition 

suggests. The interface variables of the correspond-

ing equation-based model M are not the only mem-

bers of the interface. If the causal entity E represents 

only a part of the model M, auxiliary variables will 

be added to the interface. Furthermore, if the causal 

entity defines integrators and hence possesses state 

variables, these state variables have to be part of the 

interface as well, since they are determined by the 

global algorithm for synchronous time integration. 

The same is true for variables that trigger events. 

They are also part of the interface, since their values 

must be accessible to the event finding algorithms. 

Variables that form the simulation output are not 

necessarily part of the interface. The tracking of the 

correspondent data can be done within a code mod-

ule. 

The distinction between inner and outer complexity 

is however dependent on the computational frame-

work that will embed the resulting code. Here, we 

assumed a typical environment for synchronous time 

integration, but in a different computational frame-

work like QSS [5], the integrators and event triggers 

are local and the corresponding variables do not be-

long to the outer complexity. 

4.3 Frequency of entities 

There is no incentive to turn any causal entity E into 

a code module, if there is only one instance of it. The 

number of occurrences NE is therefore a crucial crite-

rion. It influences cost and benefit of the modulariza-

tion. 

The cost of modularization is: 

• Additional computational cost: NE Co, E 

• Additional data complexity required:  Do, E 

The benefit of modularization is: 

• Saved computational cost: 0 

• Saved data complexity: (NE -1) Di,E 

Let μ be a coefficient that translates the computa-

tional complexity into data complexity. It needs to be 

determined by experience, but mostly it will be cho-

sen in such a way that μ∙Co,E is close to Do,E. Now we 

can compare the overall cost with the total benefit: 

NE Di,E > NE μ Co,E + Do,E + Di,E 

Consequently, let R be the fraction: 

R = (μ∙Co,M + DE/ NE) / Di,E 



A modularization becomes profitable if R < 1. This 

implies that μ∙Co,E must be smaller than Di,E. Further-

more we see that the inner computational complexity 

is irrelevant. If we presume that μ∙Co,E equals Do,E, the 

computational complexity can be neglected entirely. 

One of the difficulties of modularization is that a 

causal entity E for a model M may contain a sub-

entity E’ from a sub-model M’ of M. The inner data 

complexity Di,E is then dependent on the potential 

modularization of E’. If E’ forms a module of its 

own, Di,E obtains a lower value, and E itself is less 

likely to be modularized. Hence the module preser-

vation of sub-models influences the modularization 

of its super-models. Fortunately, Modelica enforces a 

strict model hierarchy, implying that models cannot 

be sub-models of themselves. This will simplify the 

further analysis in section 5, but first let us look at an 

example. 

4.4 Example 
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Figure 5:  Simple model of an electric energy market 

with producer models. 

Figure 5 presents a very simple model of an electric 

energy market. The electric power originates from 5 

nuclear power plants and 6 hydropower plants. Each 

of the power plants has its own parameters, and the 

hydropower plants are dependent on the waterflow 

from its rivers. Furthermore, one of the nuclear pow-

er plants is state owned and works for a fixed-price 

scenario whereas all other power plants compete on 

the free market. The actual model of the market is 

placed in the center and determines the price from 

the current balance of supply and demand.  

The diagram represents the top model. Its implemen-

tation is based on the system dynamics library [1]. 

The overall model contains about 1100 variables, 

whereby 800 of them represent alias variables. The 

multiple power plants are an obvious target for mod-

ularization. Let us therefore examine their causal 

signatures. 

A hydropower plant produces a certain amount of 

power given its current state. The price is determined 

by the market. The current price influences the mon-

etary profit or loss of the plant and hence drives a 

controller that aims at maximizing the profit. Each 

hydropower plant possesses two state variables: the 

desired outflow f and the current water level w. Its 

behavior is controlled by the inputs the inflow i and 

the current price $. The power p forms the output. 

Without knowing much of the interior we can deter-

mine the causal signature that is shared by all six 

hydropower plants: 

[({f , w, i },{ p, dw/dt }),({$, w },{df/dt})] 

We see that state and derivatives have become part 

of the causal interfaces. Furthermore we need two 

code modules to compute the model of the power 

plant. Also the nuclear power plants demand two 

code modules although their causal signature is sim-

pler since it has only one state: the current produc-

tion level l: 

[({l},{ p}),({$, l },{dl/dt})] 

The state owned nuclear power plant is an exception 

though. Its signature is a super-signature of the other 

plants: 

[({l, $},{ p, dl/dt })] 

Table 1 presents the ratio R for all four causal enti-

ties. 3 of the 5 entities are suited for modularization 

and so the overall data complexity can be reduced to 

roughly 50%. 

Table 1: Analysis of causal entities 

Entity Do,E Di,E NE R 

({f , w, i },{ p, dw/dt }) 5 10 6 0.75 

({$, w },{df/dt}) 3 12 6 0.46 

({l},{ p}) 2 1 4 2.75 

({$, l },{dl/dt}) 3 14 4 0.51 

({l, $},{ p, dl/dt }) 4 15 1 1.53 

5 Revised compilation process 

The proposed methods so far are feasible to apply an 

analysis to an already flattened model and to opti-

mize the resulting code by modularization. But the 

flattening alone can represent an unaffordable task, 

and hence the modularization shall be integrated in 

all of the important stages of the compilation proc-

ess. 



5.1 Preparation 

In a first preparatory stage, we attempt to estimate R 

for any causal entity E of a model M from the non-

causalized Modelica model itself. The idea is to get 

rid of all the small models that contain just a few 

equations. Therefore, this analysis does not need to 

be pursued for large models. The inner and outer 

data complexity of the corresponding Modelica 

model enables an estimation value Ř = Ďo,M / Ďi,M that 

mostly is a lower bound for the effective R of its 

causal entities. This is because causalization reduces 

the inner complexity mostly more than the outer 

complexity, and the split into causal entities mostly 

increases the overall interface. Furthermore NE is 

assumed to be infinite.  

Sub-models with Ř < 1 are not expected to contain 

modules that are valuable to preserve. The same is 

true for sub-models that occur only once. All other 

models are put into the set Ω, and their causal entities 

may form modules of the program code. Please re-

gard that equations of models that are not in Ω can 

still become part of a code module if any of their 

super-models is in Ω. Hence the selection criterion 

for Ω can be chosen even stricter than suggested. 

5.2 Instantiation and Causalization 

In the classic scheme, all models get instantiated first 

and then causalized. For very large systems this pro-

cedure is not feasible anymore. Ideally, the process 

of module preservation shall be implemented in such 

a way that the full flattening of the model can be 

avoided. Thus we propose to instantiate and causal-

ize in several alternating iterations. 

To this end, the models are being instantiated into a 

buffer of fixed size. When the capacity limit is 

reached, the equations in the buffer are causalized as 

much as possible. Those equations that could be cau-

salized are transformed into assignments and added 

to the causality graph G. Last, the buffer is cleared 

and the non-causalized equations are put aside for a 

latter iteration. 

In order to causalize the whole system, many sweeps 

over the buffer may be required. During the whole 

process, the causality graph G is constantly growing. 

When an assignment s of a model M in Ω is added, G 

and the induced sub-graph GM grow by one vertex. A 

decomposition {GE1, GE2, …, GEn} into path-complete 

sub-graphs will be affected in two possible ways: 

• a causal entity is enlarged G’Ek = GEk + s (the en-

tity that is of lowest order in G, in case there are 

several options).  

• else, the new vertex forms a new causal entity  

GE(n+1) = s.  

This procedure will lead to a busy, minimal decom-

position into path-complete sub-graphs. We further 

recognize that existing causal entities can just grow, 

but they will not be cut or merged. This is very im-

portant because this means that we can track all enti-

ties: When a common causal entity in the graph GE 

exceeds a certain threshold size, we can decide to 

modularize GE in the graph by storing it separately. 

In this way, we can avoid to store the complete cau-

sality graph in plain form. This does not mean that 

the corresponding causal entity will form a code 

module. This modularization within the causality 

graph is a separate mechanism that is suggested in 

order to save a potentially substantial amount of 

memory.  

5.3 Model hierarchy  

At the end of the causalization, we have a complete 

causality graph where larger common parts share the 

memory. The graph contains a potentially large 

number of causal entities that all have to be analyzed 

for a potential modularization. This analysis has to 

be executed in a certain order: A model may have 

instances with different causal signatures. Some of 

these signatures may be super-signatures of others. 

This will influence the modularization of the sub-

signatures, and thus all causal entities belonging to a 

model have to be analyzed at once.  

Furthermore, the modularization of an entity of a 

model M may influence the modularization of an 

entity in any of M’s super-models (remember section 

4.3). Therefore we have to execute the analysis ac-

cording to the model hierarchy starting with the low-

est models first.  

The term model hierarchy might be misleading since 

it suggests a tree-like structure. In fact, a Modelica 

model hierarchy can also be represented by a di-

rected acyclic graph that gives rise to a partial order 

on its models representing the vertices of the graph. 

The bottom-up procedure can therefore be imple-

mented as a (breadth first) graph traversal. 

5.4 Modularization 

For each model M in Ω, we built up a prefix tree of 

its causal signatures, where each node owns a coun-

ter, and the branches denote the corresponding causal 

entity E. A path from the root to a leaf then repre-

sents a causal signature SM of a model instance. Fig-

ure 6 presents an exemplary prefix tree for the block 

model of figure 3.  



 
Figure 6: Prefix tree of causal entities 

We want to find out, which causal entities are profit-

able to modularize. To this end, we have to consider 

the super-signatures first (right branch in figure 6). 

We can either create an extra causal entity for a su-

per-signature or re-use existing ones. In general, this 

is a hard optimization problem. For our purposes a 

simple heuristic procedure shall be sufficient: 

• Let E0 be the first causal entity of the super sig-

nature SM0 for the signatures S1…Sn and let E1 … 

En be their corresponding first causal entity.  

• We find the best R: Rmin = min { R(E1) … R(En) } 

• If R(E0) > Rmin we decide to split the super-

signature and integrate it into the path that be-

longs to Rmin.  

• At last, we mask out the root and repeat this 

process recursively for all sub-trees. 

If we assume the values out of column 1 from table 

2, the prefix tree of figure 6 will transform into the 

one depicted in figure 7. Assuming the values of col-

umn 2 will cause no changes in the original tree. 

Table 2: Scenarios for super-signatures 

Finally, we can compute R for all causal entities of 

the prefix tree and either chose to modularize the 

code or not, given the criteria from section 4.3. 

Please remember that in order to compute R, sym-

bolic simplifications should take place beforehand. 
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Figure 7: Prefix tree of causal entities 

5.5 Summary and run-time efficiency 

Step 1: Preparation 

Estimate Ř for all models and enter selected models into 

the set Ω. 

Step 2: Instantiation and causalization 

Install a buffer of limited capacity. 

While there are non-causalized equations do 

 Fill buffer with non-causalized equations. 

 Attempt to causalize them. 

Reject non-causalized equations for future iterations. 

 Track causal entities for the models in Ω. 

 Store larger entities separately. 

end   

Step 3: Modularization 

For all models M in Ω.  

in order of the model hierarchy do 

 Built up the prefix tree of causal signatures for M. 

Simplify the code of the corresponding causal enti-

ties. 

 Manage occurring super-signatures. 

Compute R for all remaining entities and decide to 

modularize the entity if R < 1. 

end 

It is important to note that none of these processes has to 

solve an NP-hard optimization task. The precise algo-

rithmic efficiency depends on the concrete implementa-

tion. However, let us look at the causality graph. If we 

(realistically) suppose a maximum number of variables in 

an equation, the memory demand is linear to the size of 

the system and even less than linear if modularization can 

be applied. The fact that the code modules can be created 

ad-hoc helps to keep the memory demand small. The most 

expensive algorithm that works on this graph is the step-

wise causalization. In worst case, it will lead to a quad-

ratic run-time.  

6 Further issues 

The implementation of a mechanism for re-

modularization has implications for other processes 

in the compilation. In the following, we investigate 

the most important points that need to be concerned: 

6.1 Algebraic loops 

A proper implementation of module-preserving 

compilation requires that the process of model in-

stantiation and causalization is conducted in several 

iterations. As long as the model contains no alge-

braic loop and/or requires index reduction, this is a 

 Assumption 1 Assumption 2 

R({a, b, c}, {x, y}) 1.2 0.8 

R ({a, b},{x}) 0.6 0.85 

R ({b, c},{x}) 1.8 2.0 



non-issue. For instance, the complete domain of sys-

tem dynamics is mostly non-critical.  

However, many systems cannot be represented in 

lower triangular form and thus a block lower triangu-

lar (BLT) form is typically aspired. A standard algo-

rithms for this purpose, the Dulmage-Mendelsohn 

permutation, [7,8] cannot always be applied since it 

assumes that the whole system is readily available. 

This is not naturally the case for very large systems. 

Other algorithms for a BLT transformation are there-

fore required that are able to cope with local infor-

mation only. It is possible in doing so by applying a 

tearing method directly on the whole system that 

identifies the corresponding blocks of equations (de-

noted as algebraic loops) later on. Such mechanism 

have already been developed (although for another 

purpose) in the SOL framework [9,10]. 

In general, the tearing will be needed for the efficient 

solution of the algebraic loops. A tearing method 

selects (using certain heuristics) a sufficient number 

of tearing variables and assumes them to be known. 

Now the algebraic loop can be causalized and an 

equal number of residual equations results. In order 

to solve the system, an iterative numerical solver is 

typically applied. We need to investigate how modu-

larization can be applied for the torn system of equa-

tions.  

For causal entities there are two cases that need to be 

considered with respect to algebraic loops: 

• Causal entities that contain a complete algebraic 

loop. This is in principal unproblematic. The 

code can be wrapped like any other code. How-

ever, depending on the heuristics, it is not guar-

anteed that equivalent models will be torn in an 

equivalent way. This is still a serious issue. 

• Causal entities that are only part of a loop. The 

modularization of such entities is in general not 

very meaningful. They may contain residuals or 

tearing variables that would enlarge the interface 

of these entities. Furthermore the entities may 

contain additional computations that are not nec-

essary to compute the residuals. These increase 

the computational effort and (what is worse) may 

not be fail-safe with respect to the numerical 

solver. 

6.2 Symbolic Differentiation 

The mechanisms for index reduction (see [7]), but 

also the application of iterative solvers may require 

the differentiation of subparts of the equation system. 

In the case of index-reduction the differentiation of-

ten generates algebraic loops.  

The differentiation adds new equations to the system. 

Whereas there are given models for the original set 

of equations there are no models for the differenti-

ated equations and hence no modularization can take 

place on differentiated subparts of the system. 

We therefore propose that differentiated equations 

become part of their original model can therefore 

also be part of causal entities. However, this topic 

also needs further investigation. 

6.3 Pre-compilation and re-modularization 

Causal entities map to an enclosed code segment (i.e. 

a function) that of course can be provided also in 

pre-compiled form. Hence an M&S-environment 

may decide to maintain a library of precompiled 

code from the most frequently used causal entities. 

The underlying motivation is to decrease the compile 

time. 

There remains doubt that pre-compilation will repre-

sent an effective means.  It could as well be that the 

reading from the disc is slower than the actual com-

pilation process. Only for very large code segments 

pre-compilation will be profitable for sure. Such 

code segments would correspond to sub-models that 

are not only large but also hardly decomposable into 

further sub-models. Otherwise the smaller sub-

models will be modularized and the large model 

shrinks in its inner data complexity. Ideal vehicle 

models in a traffic simulation could be one such ex-

ample. 

6.4 Modeling requirements 

Module-preserving compilation requires that the 

provided model owns a suitable hierarchic structure 

and this needs to be provided by the modeler. Since 

the compilation by itself is not able to detect any pat-

terns or to form feasible substructures the most prin-

ciple rule of information processing applies: garbage 

in – garbage out.  Badly structured or flat models 

cannot be handled efficiently. An implementation of 

a finite-element mesh within Modelica would repre-

sent one such example.  

7 Conclusions 

The concept of module-preserving compilation bases 

on the observation that a causalized model can be 

decomposed into a list of causal entities whose inter-

faces form the causal signature. Each causal entity 

corresponds thereby to a potential code module. Re-

garding the outer and inner complexity of a potential 



code module we could derive a criterion for the se-

lection of appropriate code modules. 

The integration of module preservation in the trans-

lation process is clearly a non-trivial task that in-

volves a whole bunch of issues. The model hierarchy 

needs to be taken into account. Furthermore we sug-

gest managing the different causal entities in form of 

prefix trees. Methods for tearing and state selection 

need to be provided that do not require the complete 

system to be readily available. 

Module-preserving compilation represents not more 

than one tool to optimize code and hence it cannot 

solve all problems. It will fail for flat or unstructured 

models and it may be difficult to apply if there are 

huge algebraic loops. 

Nevertheless, there are many suitable examples like 

the large electric circuits of figure 2. We also pre-

sented a model based on system dynamics (figure 5). 

Although this example is still quite small, module 

preservation is expected to decrease the code com-

plexity already substantially. Evidently, much larger 

models of an energy market can be envisioned with 

much more elaborated models. A model of the com-

plete European grid could be one example. Such a 

model would contain several thousands of power 

plants and many different market places. For such 

large models, module preservation becomes a vital 

tool in order to enable a simulation of the system at 

all.  

Our proposal for module-preserving compilation 

aims to be a general approach for a wide range of 

models. It is however possible to simplify the out-

lined procedure significantly if we can make certain 

assumptions about the model structure or require 

additional hints or help from the modeler himself. 

Such an approach will lose generality but might be 

better achievable in a practical implementation. 
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