
Object-oriented simulation
of preemptive feedback process schedulers

Martina Maggio∗, Alberto Leva
Dipartimento di Elettronica e Informazione, Politecnico di Milano

Via Ponzio 34/5, 20133 Milano, Italy
{maggio,leva}@elet.polimi.it

∗PhD student at the Dipartimento di Elettronica e Informazione

Abstract

Based on recent research, very simple discrete-time
control structures can be used to synthesise preemptive
process schedulers for multitasking systems within
a rigorous system-theoretical formalism. Doing so
virtually eliminates any heuristics, and allows for a
methodologically grounded analysis and assessment
of the achieved performances. This paper introduces a
Modelica library for the above purpose, at present still
under development, and illustrates its use with some
tests.

Keywords: Feedback scheduling; Multitasking sys-
tems; Preemptive systems.

1 Introduction

Many problems related to computing systems are be-
ing recognised and tackled as control problems [4]. A
notable example is that of process scheduling in multi-
tasking (not necessarily real-time) computing systems.
The role of the process scheduler in such systems is to
allocate the CPU usage to the running processes, so as
to guarantee properties like fairness, responsiveness,
and so forth [6]. Feedback-based techniques have been
applied to the scheduling problem [2, 3, 8] to deal with
uncertainty and disturbances, such as the behaviour of
the processes, and the availability of the resources they
may require.

In virtually the totality of the feedback schedul-
ing literature, however, the idea is concisely to “close
some loop around an existing scheduler”. Since the ob-
ject to be controlled (the “plant” to stick to the standard
terminology) includes said scheduler, in the above
context the term “actuators” takes the specific meaning
of “having the feedback controller assign the values of
some scheduling parameters” like queue lengths, pri-
ority variations, and so on, while the term “sensors”

refers to measurements of the required properties, such
as the processes’ CPU utilisation [1].

Moreover, existing schedulers are conceived by
their designers in terms of algorithms and data struc-
tures (i.e., the way computer scientists think of the
word “model”) and not of equations (i.e., the way the
same word is thought of by control scientists). Mod-
eling those schedulers is thus generally complex, but
above all it is highly unnatural with formalisms that
allow for powerful and simple analysis and synthesis
tools. Some attempts were made to devise a model for
such a scheduler (as well as other hardware and soft-
ware components) in Modelica [9]; that work however
does not include feedback policies.

This work is part of a wider research that takes com-
pletely different an attitude. Instead of acting on the
scheduler already present in the considered system,
the idea here is to replace that scheduler completely.
And correspondingly, instead of writing a model to re-
flect the scheduling algorithm, the modus operandi is
to have that algorithm emerge from the digital realisa-
tion of a controller model—a perspective shift indeed.

In other words, in this research schedulers are de-
signed exactly in the same way as a feedback con-
troller is synthesised, so as to allow expressing the
specifications by means of the usual concepts of set
point tracking, load disturbance rejection, and so on.
Thanks to the adopted formalism—that of discrete-
time linear discrete-time dynamic systems, as will be
briefly justified later on—the above concepts can be
given a quantitative meaning, which is a novelty of this
research with respect to other approaches to the same
problem, where qualitativeness and heuristics play a
central (albeit often tedious for the designer) role.

The aim of this manuscript, within the mentioned
research, is to present a small Modelica library (at
present in its first version and under continuous devel-
opment) aimed at helping the designer of a scheduling



policy assess the behaviour of said policy by means of
simulations representing the on line system behaviour
under suitably chosen load conditions. This is another
peculiarity of this work, since the great majority of the
available literature concentrates on off line schedula-
bility analysis issues [5].

2 The modelling formalism

To set up a process scheduler in the same way as
a feedback regulator is designed it is first necessary
to select a control-theoretical formalism that admits
a clear separation between the “plant” and the “con-
troller”. The necessity of such a separation de facto
rules out the use of discrete-event models. In fact, in
the discrete-event control context, defining an open-
loop process model almost inherently calls for spec-
ifying the desired behaviour in terms of constraints
only—think for example of the supervisory control
framework—while if said behaviour is more naturally
expressed (also) as a desired sequence of events, then
only top/down approaches (where the model of the
plant and the controller live jointly right from the
beginning, however) allow to guarantee some formal
property for the closed-loop system.

In addition, in the formalism to be chosen here, the
modelled objects have to admit a direct, non ambigu-
ous realisation as algorithms. This is a further ar-
gument to avoid discrete-event frameworks such as
queue networks and Petri nets for our purposes (a
promising work on the matter however is [7]), because
their inherently asynchronous nature requires to spec-
ify “something else” in order to turn a model into an
algorithm—think, for example, of evolution rules or
similar ideas.

The next step is to define a correct partition between
the plant and the controller. The matter is addressed,
in this work, in the context of a single-processor sys-
tem, and of negligible context switch durations; both
hypotheses can be relaxed at an acceptable cost, but
keeping them in for now eases the treatise. In this
context, a physical separation between controller and
plant is extremely cumbersome to figure out, but a
time-based partition between them is on the contrary
very natural. In fact, the (one) CPU is either execut-
ing some of the scheduled processes, or the scheduling
algorithm. The complete system can thus be viewed
as a discrete-time (not sampled-signals, however) one,
with a time index being related to the scheduler inter-
ventions.

It is now necessary to state what is to be meant for

(the model of) “the plant in open loop”. In the classical
applications of the control theory, think for example of
the process or motion control domains, doing so is triv-
ial (at least conceptually). The plant (model) is a sys-
tem of differential and/or algebraic equations, stem-
ming essentially from the underlying physics, where
the inputs (the controller actions) are thought of as ex-
ogenous signals. Here, the time-based model partition
comes into play: the model of the plant in open loop
is a discrete-time system that receives as inputs the re-
sults of the “controller” algorithm execution, and re-
turns the results of the “plant” algorithm execution.

The last step, and another peculiarity of the cho-
sen modelling formalism, is that anything else but the
scheduler action is treated here as an exogenous dis-
turbance. This may appear to be a limitation, since for
example a resource request is not exogenous at all for
the computing system composed of the running pro-
cesses (meaning that it can be somehow predicted, for
example). However, although not exogenous for the
running processes (the plant), such a fact is exogenous
for the scheduler (the controller). Adopting such an
attitude, we can take profit of the extremely power-
ful idea of “disturbance” as thought of in the control
theory, i.e., as one of the fundamental reasons for the
necessity of feedback.

Consider a single-processor multitasking system
with a preemptive scheduler; let N be the number of
processes to schedule, that we assume for now con-
stant (some words on the matter will be spent later
on). Let the column vectors τp(k) ∈ℜN , ρp(k) ∈ℜN ,
b(k) ∈ℜn(k) and δb(k) ∈ℜn(k), 1≤ n(k)≤ N ∀k rep-
resent, respectively,

• the total CPU times actually allocated to the pro-
cesses up to the beginning of the k-th scheduling
round, thus defining (as anticipated) the meaning
of k,

• the times to completion at the beginning of the k-
th scheduling round for the processes that have
a duration assigned (elements corresponding to
processes without an assigned duration will be
+∞, therefore allowing for the presence of both
batch processes and interactive ones),

• the bursts assigned by the scheduler to the pro-
cesses at the k-th scheduling round,

• the disturbances possibly acting on the schedul-
ing action during the k-th scheduling round,

where n(k) is the number of processes that the sched-
uler considers at each round (traditionally constant and



equal to one—an example of aprioristic constraint that
in principle can be relaxed). Denoting by t the total
time actually elapsed from the system initialisation,
the simplest plant model one can conceive is then

 τp(k) = τp(k−1)+Sσ b(k−1)+δb(k−1)
t(k) = t(k−1)+ r1τp(k−1)

ρp(k) = max(ρp(k−1)−Sσ b(k−1)−δb(k−1), 0)
(1)

where r1 is a row vector of length N with unit ele-
ments, and Sσ ∈ Σ a N× n(k) switching matrix with
elements equal to 0 or 1 and only one 1 per column,
assigning the elements of b(k) to the correct processes.
Notice that, being n(k) bounded, set Σ is finite for any
given N.

As for variations of the process pool, a newly ar-
riving one simply requires to increase N by one, add
one zero at the end of τ and one duration (or one +∞)
at the end of ρ , and add one row to Sσ . Incidentally,
the row position orders the processes by arrival time,
which is of interest for some existing and already used
scheduling policies. Similarly, altering the “grouping”
of the process pool in sub-pools, for example in view
of a multilevel scheduling, means acting on n(k).

In synthesis, under the sole limitation (to be possi-
bly relaxed in the future) that n be constant, adding
(and obviously removing) processes from the pool
simply means formulating a new model in the form
(1), that is initialised from the last state of the previous
one in a straightforward way. Since process arrivals or
terminations are events that occur on a time scale much
longer than that of the scheduling task, we concentrate
in this manuscript on the constant pool case.

Notice that the first two equations in (1) form a
linear, switching discrete-time dynamic system, apart
from the obvious input saturation constraint given by
the impossibility of negative bursts. The third one
is conversely nonlinear, but given the role of distur-
bances in the adopted framework, a process reaching
termination before exhausting its burst is simply mod-
elled as a negative disturbance element on that burst—
then the process is of course removed from the pool,
see above. Recalling that the relevant fact is here
that disturbances are exogenous to the scheduler only,
one can therefore safely treat the model as the linear
switching one τp(k) = τp(k−1)+Sσ b(k−1)+δb(k−1)

t(k) = t(k−1)+ r1τp(k−1)
ρp(k) = ρp(k−1)−Sσ b(k−1)−δb(k−1)

(2)

apart from the mentioned saturation issue.

3 Schedulers as controllers

3.1 Classical scheduling policies

If conditions are imposed to n and/or Sσ , some very
common existing scheduling policies are represented
by the chosen formalism entirely. For example

• n = 1 and a N-periodic Sσ produce all the pos-
sible Round Robin (RR) policies having the
(scalar) b(k) as the only control input, and ob-
viously the pure round robin if b(k) is kept con-
stant,

• n = 1 and a Sσ chosen so as to assign the CPU
to the process with the minimum row index and
a ρp greater than zero produces the First Come
First Served (FCFS) policy,

• n = 1 and a Sσ giving control to the process with
the minimum ρp yields the Shortest Remaining
Time First (SRTF) policy,

• n = 1 and a Sσ that switches according to the in-
creasing order of the initial ρp vector produces
the Shortest Job First (SJF) policy (notice that this
is the same as SRTF if no change to the process
pool occurs).

It is important to observe that in the list above the
classical “actuators” of the previous works for the
mentioned policies are evidenced, but here as entities
in a neat system-theoretical framework. Also the state
variables of the scheduler, that in the previous works
is part of the plant, are clearly defined (examples are
that required to switch Sσ in a periodic manner, or to
store the initial ρp). The chosen formalism hence al-
lows to include also rules that appear very far from it,
e.g. owing to the presence of queues. A notable ex-
ample is the so called selfish round robin (SRR), that
is represented by n = 1 and Sσ depending on a con-
troller state variable representing the time spent by the
corresponding process waiting for the CPU.

However, it is worth further stressing that in evi-
dencing the actuators, constraints had to be imposed
on the “pure” plant model, therefore including in that
model something that is actually control, not plant.
Moreover, the resulting “plant including the sched-
uler” (model) is not only switching but apparently non-
linear, which is not true for (2) (we mention the in-
put saturation issue here for the last time, as there are
plenty of methods to deal with it while reasoning for
the control synthesis in a linear context).



Removing the above mentioned constraints yields
therefore two benefits. First, it is a generalisation of
current scheduling policies, in a sense that is now char-
acterised. Second, it does not put into the plant model
any element that is de facto control, and as a result
leads to a plant model that can be treated as linear—
and in any case, regarding also possible futire exten-
sions, is in nature much simpler than any other one
aiming at represent also partd of the control.

3.2 New policies within the same framework

So far, it was shown that the simple modelling frame-
work adopted here can represent classical, well known
scheduling policies as variations (better, restrictions
or specialisations) of a single discrete-time dynamic
system. The question is then immediately what can
be done if different specialisations are imposed to the
general model. In the opinion of the authors, such an
exploration opens a way toward the design of sched-
ulers as dynamic systems, the mentioned “special-
isations” qualifying (sub)classes of schedulers in a
system-theoretical (not algorithmic) taxonomy.

To illustrate the idea at the present state of the re-
search, two control strategies will be explored in the
following, that use a specialisation of the model (2)
different from the ones proposed above to replicate ex-
isting policies, and by the way introduce control struc-
tures that are widely used and very well assessed in
other contexts than scheduling.

Let τr(k) ∈ ℜ represent the actual duration of the
k-th round and let the model not take into account the
CPU time required by each process, dealing with pro-
cess termination and insertion with re-initialisation as
will be explained later on. Furthermore, let the Sσ

switching signal be an ordered sequence that starts
from the first process and proceeds to last one, and
consistently be n = N. To deal with the possibility of
non activating a process (e.g. because the scheduler
knows that it has not all the needed resources to exe-
cute) the given burst can be zero. In other words, let
the “specialisation” affect only the switching signal,
so that the result be an LTI discrete-time system that
can be controlled by an LTI control structure designed
with well assessed methods—maybe the most interest-
ing class of schedulers to study, for sure the simplest
from the control-theoretical standpoint. Doing so the
model becomes

τp(k) = b(k−1)+δb(k−1)
τr(k) = r1τp(k−1)
t(k) = t(k−1)+ r1τp(k−1)

(3)

and some remarks are in order.

• Model (3) is linear and time-invariant. Of course
negative bursts are not allowed, but that is sim-
ply a matter of input saturation, and can be tack-
led with a number of techniques. Crudely speak-
ing, the control literature has been managing con-
troller design in that way with linear models for
decades, so it can be assumed that there is no need
here for anything more complex.

• Similarly, each b + δb element cannot be nega-
tive. This rigorously means that the disturbance
is bounded in a time-varying manner, which is
however irrelevant for the controller design as far
as the disturbance is taken as totally exogenous
(i.e., assuming that b + δb could in principle be
negative one considers a set of disturbances wider
than the real one, to the apparent validity confir-
mation of the devised solutions).

• The scheduler is acting not at each process activa-
tion, but only once per round. Clearly some b el-
ements can be zero, meaning that not all the pro-
cess will actually run. Since the proposed scheme
allows to control the round duration, system re-
sponsiveness issues are implicitly addressed.

The proposed control scheme has the nested loop
structure of figure 1. Let τ◦r be the required scheduling
round duration, and let

θ
◦
p ∈ℜ

N , θ
◦
p,i ≥ 0,

N

∑
i=1

θ
◦
p,i = 1 (4)

be the vector containing the required CPU time frac-
tions to be allotted to each process.

First, consider the closed-loop system (CL1 in figure
1) having as set point the desired CPU times consumed
by each process in the current round, i.e., τ◦p(k), and as
controlled variable the CPU times actually consumed
in the same round, i.e., τp(k); the control variable is
the burst vector b(k), while δb(k) is a (vector) load
disturbance.

By choosing Rp as a diagonal integral regulator with
gain kpi, i.e., ARp = CRp = IN , BRp = kpiIN , DRP =
0N×N , one makes CL1 a (diagonal) system the 2N
eigenvalues of which are N times the couple 0.5∓√

0.25− kpi. More control on those eigenvalues could
be achieved with slightly more complex a structure
for Rp, but the choice adopted here is adequate for
this work, where the scheduling algorithm complexity
needs keeping to a minimum.



Figure 1: The proposed scheme.

If τ◦p were chosen as θ ◦pτ◦r , then CL1 would con-
trol both the CPU distribution and the round duration,
but there would be two problems. First, the dynam-
ics of those two controls would be ruled by the same
eigenvalues, which can be inadequate in some cases:
for example, one may want the CPU distribution to
move smoothly from one situation to another, but the
round duration to respond very quickly to its set point,
e.g. because a change of that set point means that a
greater system responsiveness is needed immediately.
Second, and more serious, should some process be
blocked, the round duration set point could not be at-
tained.

Consider therefore the system denoted in figure 1 by
S2. Its dynamic matrix is

AS2 =
[

0N×N CRp

θ ◦pr1− IN ARp

]
(5)

With the chosen Rp, the 2N eigenvalues of (5) are
0 and 1 (with multiplicity 1 each) and N−1 times the
couple 0.5∓

√
0.25− kpi. Notice that said eigenvalues

do not depend on θ ◦p . The SISO system with input
bc and output τr seen by Rr in figure 1 has thus the
transfer function

Tr(z)
Bc(z)

=
kpi

z(z−1)
(6)

and in the following two choices are proposed for Rr.
The overall system (CL2 in figure 1) has the dy-

namic matrix

ACL2 =

DRp (θ◦p (r1−DRr r1)− IN ) CRp DRp θ◦pCRr
BRp (θ◦p (r1−DRr r1)− IN ) ARp BRp θ◦pCRr

−BRr r1 0N×N ARr

 (7)

The simplest idea is to choose Rr(z) as a purely pro-
portional controller, i.e., Rr(z) = krp. In this case the
2N eigenvalues of ACL2 are those of AS2 with couple
(0,1) replaced by 0.5∓

√
0.25− kpikrp. This choice

will be termed the “I+P” one from now on, with evi-
dent meaning.

In the case of a constant required CPU distribution,
the I+P scheme can assign the dynamics of τp and τr

in a (partially) independent manner, having Rr act by
means of an additive correction bc to the round CPU
times set point as computed based on the actual round
duration. If, conversely, a variable CPU distribution is
to be considered, the same scheme can be viewed as a
linear switching system with switch signal θ ◦p . How-
ever, its eigenvalues do not depend on the switching
signal, and in force of well known results there surely
exists a finite dwell time ensuring the exponential sta-
bility of the scheme as switching system.

The I+P scheme is apparently the computationally
lightest choice, allows for the simple stability state-
ment above, also permits to give the CPU distribution
and the round duration controls different dynamics,
but still has the (only) drawback that the round dura-
tion control is lost if a process stays blocked (the fol-
lowing examples illustrate the fact). In this scheme the
closed-loop transfer function from τ◦r to τr is

Tr(z)
T ◦r (z)

=
kpikrp

z2− z+ kpikrp
(8)

thus allowing for a simple choice of the parameters
(see the examples later on).

If one cannot guarantee that no persistent process
blockings arise, it is advisable to select for Rr a PI
structure, i.e., Rr(z) = krr(z− zrr)/(z−1), that can re-
cover such a situation, and leads to what will be termed
the “I+PI” scheme. In this case the 2N +1 eigenvalues
of CL2 have a long expression omitted for brevity, but
still do not depend on the switching signal if a variable
required CPU distribution has to be assumed. Hence,
the same stability considerations above apply. In the
I+PI case the closed-loop transfer function from τ◦r to
τr is

Tr(z)
T ◦r (z)

=
kpikrr(z− zrr)

z3−2z2 +(1+ kpikrr)z− kpikrrzrr
(9)

and the parameter choice is just slightly more articu-
lated (again, refer to the following examples).



Figure 2: Activation sequence, in the first figure the round robin sequence is presented, in the second one the
I+P and in the third one the I+PI.

4 The SkedSim library

The objects to be modelled are the process, the pool
of processes, the scheduler, and the complete system
(the world in our terminology). Since dynamic allo-
cation of objects is not permitted, the pool will simply
be a vector of processes, i.e., a fixed number of pro-
cesses possibly being scheduled is allocated, and each
of them can be in the scheduling round or not at any
given instant.

The process does not de facto accomplish anything
for the purpose of this research, that is centered on
the scheduler’s operation; therefore the process is sim-
ply a time delay realised by a convenient use of the
modelica when clause, taking control of the CPU for a
time equal to the allotted burst plus a certain variabil-
ity, and counting the elapsed time by trivially setting
the derivative of a convenient continuous variable to
one or zero depending on the process having or not the
CPU.

The scheduler is in fact the object determining
how the switching signal is managed, hence the place
where different “actuation” policies are realised. In
this manuscript a “round robin” scheduler suffices for
all the presented policies, the difference between the
standard round robin and the I+P or I+PI schemes re-
siding only in the way the bursts are computed at the
beginning of each round.

Thus, each type of scheduler can further specialise
its operation by calling a particular scheduling func-
tion, that implements the specific way of determining

the quantities needed to turn an actuation policy into
a complete scheduling mechanism. Such a partition
between “actuation” and scheduling is consistent with
the proposed way of classifying the policies, which
in turn corresponds to the system-theoretical idea of
viewing them as particular cases of a switching signal,
the taxonomy residing precisely in how the switching
signal is managed.

Given all the above, the library organisation is very
simple and intuitive. To avoid a lengthy treatise, in the
following an excerpt of the process modelica code is
reported.

model Process
ProcessPort p; // Process/scheduler I/F
input Boolean blocked; // Variable for blockings
discrete Real startTime; // Last activation time
Real gCpuPerc; // Global cpu percentage
Real gCpuTime; // Global cpu time
Real rCpuTime; // Last round cpu time

algorithm
when edge(p.activation) then

p.running := true;
startTime := time;
reinit(rCpuTime, 0);

end when;
when time>=startTime+p.burst or

p.burst<=0 or (pre(p.running) and p.blocked)
then
p.running := false;

end when;
equation

blocked = p.blocked;
gCpuPerc = if time<=0 then 0 else gCpuTime/time;
der(gCpuTime) = if p.running then 1 else 0;
der(rCpuTime) = if p.running then 1 else 0;
p.gCpuTime = gCpuTime;
p.rCpuTime = rCpuTime;

end Process;



Figure 3: Running time for processes 1, 3, 5 and 7, in the first figure the round robin sequence is presented, in
the second one the I+P and in the third one the I+PI.

Moreover,the relevant (algorithm and equation) sec-
tion of the scheduler is shown below.

algorithm
when edge(not_running[previous]) or initial() then

activation[previous]:=false;
if previous==nProcesses then

bursts := Schedulers.SchedulerFunctions
.IplusP
(nProcesses,SP_Tr,alfa,Tp,bursts);

// ...or any other scheduling function
previous := 1;
roundDuration := time - startTime;
startTime := time;
for i in 1:nProcesses loop

CPUPercPerRound[i]:=if roundDuration<=0
then 0
else Tp[i]/roundDuration;

end for;
else

previous:=previous+1;
end if;
while bursts[previous]<=0 loop

previous:=previous+1;
if previous>nProcesses then

bursts := Schedulers.SchedulerFunctions
.IplusP
(nProcesses,SP_Tr,alfa,Tp,bursts);

// ...same as above
previous:=1;
roundDuration := time - startTime;
startTime := time;
for i in 1:nProcesses loop

CPUPercPerRound[i]:=if roundDuration<=0
then 0
else Tp[i]/roundDuration;

end for;
end if;

end while;
activation[previous]:=true;
end when;

equation

for i in 1:nProcesses loop
not_running[i] = not pre(running[i]);

end for;

As can be seen, the library organisation and the
meaning of the various models are consistent with
the specific way of addressing the scheduling prob-
lem proposed in this research, and take profit of the
possibility (typical of modelica) of mixing algorith-
mic modeling and asynchronous events. The SkedSim
library will be made available to the scientific com-
munity under the terms of the GPL license as soon as
possible.

5 Simulation examples

This section presents some simulation examples,
comparing a standard round robin policy with the
two proposed feedback ones, that share the actua-
tion scheme but encompass a more powerful burst
computation mechanism. The simulations are con-
ducted with ten running processes. Processes 1, 2
and 5 block from time 10.5 to time 30.5. The
round duration set point is 2 for the I+P and I+PI
schemes (there is no equivalent in the standard, open-
loop one) while the desired percentage distribution
is {0.1,0.05,0.05,0.2,0.01,0.09,0.2,0.2,0.05,0.05}.
The quantum for the round robin scheduling is 1 time
unit.

Figure 2 shows the activation sequence (i.e., the or-
der in which the scheduler makes the processes run).



Figure 4: CPU time allotted to processes 1, 3, 5 and 7, in the first figure the round robin sequence is presented,
in the second one the I+P and in the third one the I+PI.

Figure 5: CPU percentages to processes 1, 3, 5 and 7, in the first figure the I+P sequence is presented, in the
second one the I+PI.

Figure 3 shows the running signal taken from the pro-
cesses. One can see that in the round robin example
the first process was activated at time 10 with a quan-
tum of a time unit but at time 10.5 blocks, releasing
therefore the CPU, that is given to process three (the
second is blocked too). In figure 4 the times allotted to
processes 1, 3, 5 and 7 is shown; the comparison be-
tween the round robin and the feedback policies is self-
explanatory (the feedback policies allows for a “con-
trolled” distribution, while in the round robin policy
no adaptation is possible).

Finally, figures 5 and 6 depict the CPU percent-
age distribution. The first one shows the distribution
over time, while the second one reports the distribution
within the current round. It can be seen that even if the
percentage per round when the processes are blocked
is zero, in the long run the gap is filled thanks to the
feedback strategy.

6 Conclusions and future work

In this work, very simple discrete-time control struc-
tures were used to synthesise preemptive process
schedulers for multitasking systems within a rigorous
system-theoretical formalism. In particular, in this
paper a Modelica library for the above purpose, at
present still under development, was presented, and its
use was illustrated with some tests.

Based on the work done until now, the modelica
language has shown some advantages when it comes
to modelling computing systems. First of all, it al-
lows to integrate discrete dynamics and events (like
signals from the system components) with continu-
ous evolution (i.e., the processes’ execution seen in
the real world time). Along the same line, thinking
of future extensions, not only scheduling-related con-
trol strategies can be seamlessly implemented, but it is
also possible to test their validity in the case they have



Figure 6: CPU percentages per round to processes 1, 3, 5 and 7, in the first figure the I+P sequence is presented,
in the second one the I+PI.

to be used for realising control systems connected to
the physical world (as is typically the case for embed-
ded real-time ones, a field that has been devoted much
research but is in some sense lateral with respect to this
work).

However, the present research has also highlighted
some limitations of the modelica use for the chosen
purpose. For example, it would be of great interest
in this work to investigate the scheduling algorithm
and time performance, analysing how much time is
spent for the scheduler execution, and therefore hav-
ing a clue of the expectable system performances. For
well known motivations the modelica language is not
conceived for such a kind of analysis, however.

For the reasons summarised above, future directions
for the presented research still need some reasoning
and discussion to be envisaged clearly, but given the
positive remarks above, other attempts will certainly
be done to overcome the mentioned limitations and
employ modelica for the purpose sketched out herein.

References

[1] T.F. Abdelzaher, J.A. Stankovic, C. Lu, R. Zhang,
and Y. Lu. Feedback performance control in soft-
ware services. IEEE Control Systems Magazine,
23, 2003.

[2] Luca Abeni, Luigi Palopoli, Giuseppe Lipari, and
Jonathan Walpole. Analysis of a reservation-based
feedback scheduler. In Real-Time Systems Sympo-
sium, 2002. RTSS 2002. 23rd IEEE, pages 71–80,
2002.

[3] Ashvin Goel, Molly H. Shor, Jonathan Walpole,
David Steere, and Calton Pu. Using feedback con-
trol for a network and cpu resource management
application. In Proceedings of the 2001 American
Control Conference, volume 4, pages 2974–2980,
Arlington, VA, USA, 2001.

[4] J.L. Hellerstein, Y. Diao, S. Parekh, and D.M.
Tilbury. Feedback Control of Computing Systems.
Wiley, September 2004.

[5] J.C. Palencia and M. González Harbour. Schedu-
lability analysis for tasks with static and dynamic
offsets. In In Proceedings of the 19th IEEE Real-
Time Systems Symposium, pages 26–37, 1998.

[6] M. Pinedo. Scheduling Theory, Algorithms, and
Systems. Springer, third edition edition, July 2008.

[7] O.H. Roux and A.M. Déplanche. A t-time petri net
extension for real time-task scheduling modeling.
European Journal of Automation, 36, 2002.

[8] David C. Steere, Molly H. Shor, Ashvin Goel,
Jonathan Walpole, and Calton Pu. Control and
modeling issues in computer operating systems:
resource management for real-rate computer ap-
plications. In Proceedings of the 39th IEEE Con-
ference on Decision and Control, volume 3, pages
2212–2221, Sydney, NSW, Australia, 2000.

[9] F. Wagner, L. Liu, and G. Frey. Simulation of dis-
tributed automation systems in modelica. In Pro-
ceedings of the 6th International Modelica Con-
ference, Bielefeld, Germany, 2008.


