
Improving Convergence of Derivative-Based Parameter
Estimation with Multistart Parameter Clustering

Based on DAE Decomposition

Atya Elsheikh∗ Katharina Nöh Eric von Lieres†

Research Center Jülich, Institute of Biotechnology 2
{a.elsheikh, k.noeh, e.von.lieres}@fz-juelich.de

Abstract

Derivative-based optimization methods for parameter
estimation require good start values in order to con-
verge to the global optimum. A conventional multi-
start strategy is often not practical for identifying such
start values, especially for high dimensional problems.
Moreover, the computational efforts for each iteration
of the optimizer are significantly increased by the com-
putation of parameter sensitivities. We hence present
a multistart recursive clustering strategy that utilizes
DAE decomposition algorithms, in particular Tarjan’s
and tearing algorithms. These algorithms are also used
by standard Modelica compilers for improving the per-
formance of solving large DAE systems. Our key con-
cept is to provide a natural decomposition of the pa-
rameter estimation problem into smaller clusters (i.e.
subproblems), each of which requires fewer start val-
ues and less computation. The resulting local min-
ima are taken as start values for enlarged subproblems,
and so forth until good start values for the original
problem are found. This approach serves to improve
global convergence and computational speed of multi-
start derivative-based optimization strategies for large
sparse DAE systems.

Keywords: Parameter estimation, global optimiza-
tion, cluster methods, DAE decomposition algorithms

1 Introduction

1.1 Problem Specification

Differential algebraic equations (DAE) are widely
used in modeling and simulation applications, for ex-
ample in Electrical Engineering, Biochemical Engi-

∗Evonik Industries are acknowledged for financial support
within the BMBF co-funded project SysMAP (project no.
0313704)

†To whom correspondence should be addressed.

neering, Mechanics and Thermodynamics. In most ap-
plications the values of some model parameters are not
known a priori and must hence be estimated from mea-
sured data. A parametrized DAE system is formally
given by:

F(ẋ,x, p, t) = 0, x(0) = x0 (1)

with a function F : R2N+M+1 → RN that is sufficiently
smooth with respect to the state variables x ∈ RN and
parameters p ∈ RM. Typical parameter estimation
problems aim at minimizing the distance between sim-
ulation results x(p, t) and measurement data x̃(tj)∈RN

at discrete time points tj with j = 1..T in the sense of
least squares:

r =
1
2
||Q||22 ∈ R (2a)

Q = [q1, ..,qT] ∈ RN·T (2b)

qj = x̃(t j)− x(p, t j) ∈ RN , j = 1..T (2c)

Note that Q /∈ RN×T is a vector and not a matrix.
For start values p0 ∈ RM that are chosen sufficiently
close to a local optimum p∗loc ∈ RM, the Gauss-Newton
algorithm converges to p∗loc by iterating the following
scheme [1, 2]:

pi+1 = pi − (ri
pp)

−1 · ri
p

≈ pi −
([

xi
p

]T · xi
p

)−1
· [xi

p

]T ·Q
where

ri
p =

∂ r
∂ p

(pi) ∈ RM

ri
pp =

∂ 2r
∂ p2 (pi) ∈ RM×M

are first and second order partial derivatives of the
residual r with respect to the unknown parameters, and

xi
p =

∂x
∂ p

(pi) ∈ RN·T×M

are first order partial derivatives of the model solu-
tion x with respect to the unknown parameters, also
referred to as parameter sensitivities.

1.2 Common Problems in Derivative-Based
Optimization

Practical application of derivative-based optimization
methods (for instance Gauss-Newton) for obtaining a
global optimum

p∗ = argmin
p∈{p∗loc}

r(p)

is typically hindered by the following problems:

1. Good start values are hard to obtain: The re-
sulting optimization problem can be efficiently
solved when good start values are known. How-
ever, from most arbitrarily chosen start values the
algorithms either diverge or converge only to a lo-
cal optimum. This problem will be discussed in
more depth in section 1.3.

2. The Hessian rpp is usually approximated by
(xi

p)
T · xi

p which is often semi-singular: In this
case the inverse cannot be exactly computed but
is usually approximated by a pseudo-inverse us-
ing singular value decomposition. This approx-
imation is however inaccurate, in particular for
high dimensional matrices in large optimization
problems.

3. Parameter sensitivities xp are expensive to com-
pute: These sensitivities are usually computed
by either solving the original DAE system (equa-
tion 1) together with the associated computation-
ally expensive sensitivity equations:

Fẋ · ẋp +Fx · xp +Fp = 0, xp(0) = 0 (3)

or by using less precise finite difference methods.

1.3 Identification of Successful Start Values

The determination of suitable start values for high
dimensional parameter estimation problems that are
located within the global convergence area of a
derivative-based optimization algorithm is not trivial
because:

1. The space Sp ⊆ RM of parameter values that are
physically admissible is typically large.

2. The DAE system extended with parameter sen-
sitivities (equations 1 and 3) is usually solvable
only in a subspace Ssol ⊆ Sp.

3. Some parameter values can cause numerical dif-
ficulties that are associated with the numerical
solver. We denote the subspace covering such pa-
rameter values by Sdi f f ⊆ Ssol . For example, as-
sume that the DAE system (equation 1) together
with the sensitivity equations 3 are not stiff in the
global optimum p∗, but the optimizer may iterate
over parameter values for which these equations
are stiff, and hence numerically harder to solve.

4. Nonlinear optimization problems usually have
numerous local optima, and global convergence
is guaranteed only for start values p0 ∈ Nε(p∗)
from a subspace SNε (p∗) ⊆ Sp around the global
optimum p∗.

Start values should hence ideally be chosen within
the subspace Sconv = SNε (p∗)

⋂
(Ssol/Sdi f f) in order to

efficiently find the global optimum p∗. Conventional
multistart optimization strategies are not practical for
high dimensional problems in which Sconv is notably
smaller than Sp. Moreover, computational efforts are
significantly increased by the computation of parame-
ter sensitivities.

1.4 Multistart Recursive Clustering

We here present a multistart recursive clustering strat-
egy that is specifically designed to reduce the num-
ber of starts required for identifying values in Sconv

from which the applied derivative-based optimiza-
tion method globally converges. This multistart strat-
egy heuristically decomposes the optimization prob-
lem into smaller clusters (i.e. subproblems), and has
similarities with cluster optimization methods. Each
cluster Ci defines a parameter estimation subproblem
that is characterized by:

• a parameter subset pi ∈ RMi with ∑
i

Mi = M,

• a variable subset xi ∈ RNi with ∑
i

Ni = N,

• the corresponding subset of measurement data
x̃i ∈ RNi×T ,

• a residual r that is a function only of pi, xi and x̃i

(compare equation 2).

Each cluster Ci is recursively decomposed into sub-
clusters Ci, j and so forth. In this way, rather small clus-
ters are created and our strategy begins with separately
estimating the respective parameter subsets. Once op-
tima are found, the resulting parameters are taken as
new start values and the cluster size is enlarged, and
so forth until the complete original system is reconsid-
ered.

In the present study we aim to optimally decom-
pose the parameter estimation problem into smaller
subproblems specifically for DAE systems. A related
problem has already been researched in the context
of speeding up the solution of high dimensional DAE
systems, namely finding optimal decompositions of a
DAE system into smaller DAE subsystems, each of
which solves a subset of state variables. We here de-
termine the clusters Ci with the same DAE decompo-
sition algorithms [7, 8]. These algorithms use intuitive
but powerful clustering heuristics to naturally decom-
pose the optimization problem into smaller subprob-
lems with well defined dependencies. The details of
this approach will be explained in section 3.

1.5 Practical Aspects

The proposed strategy can effectively solve the pre-
viously discussed problems of parameter estimation
with derivative-based optimization algorithms:

1. Fewer starts are required. The recursive mul-
tistart parameter clustering strategy helps to ra-
tionally identify good start values from which
derivative-based optimization algorithms con-
verge to the global optimum. This optimum can
hence be identified with significantly fewer starts
for the full system as compared to conventional
multistart strategies.

2. Smaller subproblems are processed most of the
time. The parameter estimation problem for each
individual cluster Ci involves fewer parameters
pi, fewer state variables xi, and mostly also fewer
model and sensitivity equations. The full set of
system equations is solved only for few itera-
tions from start values that are already close to
the global optimum. Moreover, the approxima-
tions to the Hessian are often more accurate and
numerically better conditioned for small clusters.

3. Automatic differentiation enables efficient com-
putation of parameter sensitivities. We apply
ADModelica (Automatic Differentiation of Mod-
elica), a self developed tool that exploits high

level Modelica compiler techniques for generat-
ing Modelica code for efficiently and precisely
computing the required parameter sensitivities.
Automatic differentiation involves significantly
less equations as explicit differentiation and finite
difference methods [3, 4, 5]. Moreover, we ex-
ploit the known structure of the sensitivity equa-
tions for reducing compilation and simulation
time on both serial and parallel computers [6].

1.6 Outline

The remainder of this contribution is structured as fol-
lows: In section 2 we give an overview of the DAE de-
composition algorithms that we reuse in the context of
parameter estimation. The implementation of the pro-
posed strategy is then presented in section 3 in a sim-
plified form without low level tricks, although fine tun-
ing could further improve the results that are reported
in section 4. In section 5 we conclude with discussion
of potential limitations as well as future developments
and applications of the presented method.

2 DAE Decomposition

2.1 Structure Digraph of DAE Systems

Directed graphs are used as intermediate representa-
tions for symbolical handling and simulation of DAE
systems that are automatically generated from Mod-
elica models. Figure 1 shows the simple example of
a linear reaction chain, that is mathematically repre-
sented by equation 4 with initial values Xi(0) = X0

i for
i = 1..5.

Figure 1: Five nodes with capacities Xi that are con-
nected by flows vi and subjected to mass conservation.

Ẋ1 = −v1 (4a)

Ẋi = vi−1 − vi, i = 2..5 (4b)

v j = v j,max · Xj

k j +Xj
, j = 1..4 (4c)

v5 = d ·X5 (4d)

The differential equations 4a to 4b are also referred
to as rate equations, and the algebraic equations 4c

to 4d determine the flow rates vj as functions of the
maximal flow rates vj,max, saturation parameters kj

with j = 1..4, and of the degradation rate d. Figure 2a
shows the bipartite graph representation of the DAE
system 4 according to the following definition:

Definition (Bipartite Graph Representation) A bi-
partite graph representation G = (V,E) of a DAE sys-
tem (equation 1) consists of a set of vertices:

V = Ve ∪Vx

Ve = {ei : equation number i}
Vx = {xi : variable number i}

and a set of edges:

E = {(ei,x j) : x j occurs in equation ei}
with i, j ∈ {1, ...,N}.

Figure 2: Bipartite graph representation (a) and struc-
ture digraph (b) of the example DAE system (equa-
tion 4). Red dashed arrow: equation e is explicitly
solved for variable x. Blue arrow: variable x is re-
quired for solving equation e for another variable.

The bipartite graph representation can be trans-
formed into a structure digraph [7], as illustrated in
figure 2b for the DAE system from equation 4. This
directed graph reveals the causality relations among
variables and equations. Ideally each equation e is ex-
plicitly solved for one variable x. In practice, however,
algebraic loops can occur when a group of equations
must be concurrently solved for a group of variables,
for instance the ODE system ẋ = y and ẏ = x.

2.2 DAE Decomposition Algorithms

DAE systems that are generated from descriptive
Modelica models usually consist of many components

and connectors. They are hence high-dimensional
and sparse, meaning that only few variables appear
in each equation. Instead of solving these equations
at once, one can often decompose such systems into
smaller blocks of equations. Sequential solution of
these blocks reduces overall complexity and conse-
quently speeds up the computation.

The example DAE system (equation 4) can be de-
composed into sorted blocks of equations. Application
of Tarjan’s algorithm [9] to the directed graph in fig-
ure 2b yields a set of Strongly Connected Components
(SCCs) as shown in figure 3. Each SCC Ci represents
an equation block that is solved for a subset of the vari-
ables. The SCCs are subjected to a topological sorting
"<", imposing an order in which the blocks must be
solved. Ci < Cj if xi is required for determining xj.
In figure 3, Ci < Cj if i < j, resulting in the solution
scheme shown in figure 4.

Figure 3: Strongly Connected Components (SCCs) of
the structure digraph of the example DAE system.

The block C1 in figure 3, representing the equations
4a and 4c for j = 1, is solved for X1 and v1. The value
of v1 is then used to solve the equations represented
by the block C2, and so forth until all variables are
determined. A sequential system decomposition as in
figure 3 cannot always be achieved. For example con-
sider figure 1 with an additional flow connection from
X5 to X1. In contrast to figure 3, the resulting digraph
now has a cyclic structure, as shown in figure 5.

In this example all equations must be concurrently
solved for all variables. Such problems can be solved
with Tearing methods [10, 11]: First initial guesses are
provided for certain state variables in order to decou-
ple the corresponding SCCs. For example, specifica-
tion of X5 would make C5 independent from C4. The
SCC structure is made acyclic by tearing the graph
apart through the tear variable X5 at the connection
between C4 and C5. The DAE system is then decom-

posed as before, and the remaining state variables Xi

with i = 1..4 are sequentially determined. With these
solutions the initial guess of X5 is corrected through v4,
and this process is repeated until X5 does not signifi-
cantly change any more. The choice of suitable tear
variables generally is a key question of tearing meth-
ods. In the present study we apply physical knowledge
about the modeled system.

Figure 4: Solution scheme of the equation blocks for
the example DAE system (equation 4).

Figure 5: SCCs of the structure digraph of an example
DAE system with cyclic structure.

3 Parameter Estimation

We now address the estimation of unknown model pa-
rameters by minimizing the distance between simula-
tion results and measurement data. Our basic idea is to
decompose the DAE system into SCCs as described in

the previous section, and to treat the individual clusters
Ci as separate parameter estimation subproblems.

3.1 Example with Linear Structure

Reconsider the model from equation 4 (figure 1), and
suppose that X̃(t j) ∈ R5 are corresponding measure-
ment data at discrete time points tj with j = 1..T . Each
of the parameter estimation subproblems is character-
ized by:

• the parameters ki and vi,max for i = 1..4 or, respec-
tively, d for i = 5,

• the variables Xi(t) and vi(t) that equation block
Ci is solved for,

• the corresponding measurements X̃i(t j) at times
t j with j = 1..T .

The dependency between the subproblems is well-
defined, because the fluxes vi−1(t) that are required in
an equation block Ci are always determined from the
previous equation block Ci−1 (see figure 4). The rela-
tion Ci < Cj for i < j enables to estimate parameters
k j and vj,max from measurements Xj after ki and vi,max

have been estimated for i < j.

3.2 Algorithm

Algorithms 1 and 2 formally describe the procedure of
our multistart recursive parameter clustering strategy.
Three inputs are required:

1. C: A cluster specifying the processed parameter
estimation subproblem, in particular the involved
parameter, variable and data subsets, as well as
the space of feasible parameter values (see sec-
tion 1.3).

2. OptAlg: The optimization strategy to be applied,
for example Gauss-Newton algorithm.

3. N: The number of start values for estimating the
involved parameter set with a multistart strategy.
Alternatively, algorithm 2 can be called with a
specific set of start values.

Algorithm 1 first attempts to optimize the parameters
in a given cluster C. Algorithm 2 is called for process-
ing a conventional multistart strategy (line 1). If an ac-
ceptable residual r is achieved, the solution is returned
(line 2), and otherwise the optimization problem is fur-
ther decomposed.

Algorithm 1 Multistart Clustering Strategy
ClusterOptAlg(C, OptAlg, N)
input Cluster: C

Optimization Algorithm: OptAlg
Number of Start Values: N

output Optima: p1..M
C with M ≤N

1: p1..M
C = Multistart(C, OptAlg, N)

2: if IsAcceptable(p1..M
C) then

3: return
4: end if
5: if IsDecomposable(C) then
6: [Ck,<] = SCC(C)
7: for all k do
8: p1..Mk

Ck
= ClusterOptAlg(Ck , OptAlg, N)

9: for all j do
10: if Ck < Cj and adjacent(Ck ,Cj) then
11: Cj ⇐ xk(p1..Mk

Ck
)

12: end if
13: end for
14: end for
15: � construct start values from local optima
16: p1..N

0 = ∪k p1..Mk
Ck

17: p1..M
C = Multistart(C, OptAlg, p1..N

0)
18: else
19: � Decompose using a tear variable xt
20: [Ck,<] = Tearing(C,xt)
21: � Start values of all parameters
22: C1 ⇐ p1..N

0
23: ITR = 0
24: while ITR < MAX_ITERATIONS do
25: for all k do
26: p1..Mk

Ck
=Multistart(Ck , OptAlg, N)

27: for all j do
28: Cj ⇐ p1..Mk

Ck

29: end for
30: end for
31: p1..N

0 = ∪k p1..Mk
Ck

32: p1..M
C = Multistart(C, OptAlg, p1..N

0)
33: if IsAcceptable(p1..M

C) then
34: return
35: end if
36: ITR = ITR + 1
37: end while
38: end if

The type of decomposition in algorithm 1 depends
on the structure of the underlying DAE system: Linear
structures are processed in lines 6-17, and cyclic struc-
tures in lines 19-37. The constructed subproblems are
sequentially solved (lines 8,26), according to the op-

Algorithm 2 Multistart Strategy

Multistart(C, OptAlg, N or p1..N
0)

input Cluster: C
Optimization Algorithm: OptAlg
(Number of) Start Values: N or p1..N

0
output Optima: p1..M

C with M ≤N

1: if 3rd Input is N then
2: p1..N

0 = generateStartValues(C, N)
3: end if
4: � compute optima from start values
5: p1..N

C = OptAlg(C, p1..N
0)

6: � Remove poor local optima
7: p1..M

C = Filter(p1..N
C)

erator "<". The results of solved clusters are passed
to dependent clusters (lines 9,27). Finally, the orig-
inal problem is reconsidered with the resulting local
optima as start values (lines 15-17,31-32).

3.3 Implementation Details

Algorithm 2 applies the optimization algorithm
OptAlg to compute local optima p1..N

C of a cluster Ci

from N start values that are either self-generated or
passed as p1..N

0 . In our actual implementation, the re-
sulting local optima of each cluster are sorted with re-
spect to the quality of their corresponding residuals
ri. A χ2-test is then performed, and the worst local
optima are removed such that the remaining optima
follow a uniform distribution with prespecified con-
fidence level. DAE systems with linear structure are
processed with higher confidence levels than DAE sys-
tems with cyclic structure.

Moreover, we apply tearing heuristics not for seek-
ing decompositions that are most optimal for effi-
ciently solving the DAE systems, but rather aim at
constructing clusters that are small and require only
few start values. However, automatic recognition of
decompositions that are optimal for the parameter esti-
mation problem is not yet implemented, and tear vari-
ables are manually chosen on the basis of physical
knowledge about the model topology.

3.4 Example with Linear Structure
(continued)

Figure 6 illustrates a run of our algorithm for the ex-
ample DAE system with linear structure (equation 4,
figure 1). First, the parameters of cluster C1 are es-
timated with the Gauss-Newton algorithm and a con-
ventional multistart strategy. This strategy generates

N start values for k1 and v1,max, respectively. From
M ≤N of these start values the optimization algorithm
converges to local optima k1..M

1 and v1..M
1,max.

Figure 6: Multistart clustering strategy for the example
DAE system with linear structure (equation 4).

In case the optimization algorithm has not con-
verged for all start values, N−M optima are randomly
chosen and copied in order to maintain a full set of
N optima. The corresponding N solutions for the state
variable v1 are passed to the next cluster, C2. The same
process is then repeated for C2 with N start values for
k2 and v2,max, respectively, that are randomly paired
with the N solutions for v1, and so on until all param-
eters are estimated.

Next, larger clusters are constructed by merging
smaller clusters. For instance C1 is merged with C2,
and C3 with C4. We apply a binary tree data-structure
in order to always merge clusters that are adjacent to
each other. Start values are not newly generated at
this stage, but the optima from the merged clusters are
used. For instance, the optima that were individually
estimated for clusters C1 and C2 are now together used
as start values for the cluster that is merged from C1

and C2. This process is recursively performed until the
original problem is reconsidered with very good start
values for global optimization.

3.5 Example with Cyclic Structure

Figure 7 illustrates a run of our algorithm for the exam-
ple DAE system with cyclic structure (figure 5). The
clusters are defined as before, but the clustering strat-

egy is somewhat different, because the whole DAE
system must be concurrently solved for the state vari-
ables of all clusters when the parameters of one clus-
ter are estimated. This explains the difference between
lines 9 and 27 in algorithm 1.

Figure 7: Multistart clustering strategy for the example
DAE system with cyclic structure.

We treat parameter estimation problems with cyclic
structure similarly to the decomposition of DAE sys-
tems with cyclic structures for fast solution. Again,
N start values are chosen for each unknown parame-
ter (line 21). The N initial guesses for one cluster are
fixed, for instance k5 and v5,max in cluster C5. Then the
parameters of all clusters are sequentially estimated
with a conventional multistart strategy. The resulting
optima are passed to all clusters (line 27), and the val-
ues of those parameters that were originally fixed are
refined. Finally the parameters of the original DAE
system are estimated with the combined optima of the
clusters as start values. This procedure is repeated for
several rounds, until either the residual r of the origi-
nal DAE system drops below a prespecified threshold
or the number of rounds exceeds a predefined maxi-
mum.

4 Benchmark

Equation 5 defines an abstract example that we use as
benchmark for comparing the performance of our mul-
tistart clustering strategy with the conventional multi-
start strategy. The benchmark is again a reaction net-
work model that consists of a linear pathway (X1−X6)
and a cyclic pathway (X6 −X12). Simulation results
without additional noise are used as synthetic data for

re-estimating the model parameters. We applied the
Gauss-Newton optimization algorithm, and initially
choose the interval (p∗

2 ,2p∗) around the known global
optimum as admissible region Sp for each parameter.

Ẋ1 = −v1 (5a)

Ẋi = vi−1 − vi, i = 2..5 (5b)

Ẋ6 = v5 + v12 − v6 (5c)

Ẋi = vi−1 − vi, i = 7..12 (5d)

v j = v j,max · Xj

k j +Xj
, j = 1..12 (5e)

Table 1 documents that we used ten times fewer at-
tempts for our clustered multistart strategy than for the
conventional approach with random start values. How-
ever, most attempts of the clustered strategy converged
to the global optimum, whereas the conventional mul-
tistart strategy did not at all converge from 1000 start
values that were arbitrarily chosen in Sp.

Table 1: Conventional vs. clustered multistart strategy
Multistart Conventional Clustered

of attempts 1000 100, N = 10
Best Quality of r ∞ 10−5

Success Rate 0% 96%
of Simulations 2223 980 / attempt

Table 2 shows that the success rate decreases
when the admitted parameter region Sp is enlarged to
(p∗

4 ,4p∗), even if the number of attempts per cluster is
increased from 10 to 20. More attempts improve the
probability of finding successful start values at the cost
of computational effort.

Table 2: Effect of start value region and number
Start Values Sp : p0 ∈ (p∗

4 ,4p∗)
of attempts 100

N 10 20
Success Rate 16% 44%

of simulations / attempt 2550 4906

Table 3 illustrates how the residual r improves with
each iteration in the cyclic part of the model for N = 20
and Sp ⊂ (p∗

4 ,4p∗). The residual r is significantly
reduced in the very first iteration, since the average
residual for the initial guesses varied around 890. In
attempts 1 to 5 start values close to the global opti-
mum were found after several iterations. After each
iteration, the strategy attempts to improve the solution

of the tear variable (X12 in this example). In attempts 2
and 6 the start values diverged, though small residuals
were achieved.

Table 3: Residuals in cyclic DAE part
Attempt 1 2 3 4 5 6

Iter 1 2.59 1.76 1.91 4.83 2.85 3.64
Iter 2 1.19 1.47 0.00 0.89 0.90 2.55
Iter 3 0.79 2.66 - 0.41 0.26 1.47
Iter 4 0.33 - - 0.00 0.00 1.19
Iter 5 0.00 - - - - 0.81

5 Conclusions and Outlook

In this contribution we have presented a multistart re-
cursive clustering strategy for efficiently estimating
the parameters of DAE systems with derivative-based
optimization algorithms. The algorithm has been illus-
trated by two simple examples with and without cyclic
dependencies in the solved DAE system. A slightly
more complex example that combines linear and cyclic
structures has been used as benchmark for compar-
ing the performance of our clustering strategy with the
conventional multistart strategy.

At some points we have dealt with special cases,
and the algorithms and examples can be generalized
and extended in various directions:

• In the presented examples each parameter occurs
only in one equation, and clear physical causal-
ity relation exist between the variables and the
parameters. In general, however, the parameters
must be included in the causality analysis.

• The benchmark was manually constructed. Sys-
tem analysis and clustering can be implemented
using the ADModelica tool, which provides a
suitable infra-structure for analyzing Modelica
models and for implementing DAE decomposi-
tion algorithms.

• Real measurements are afflicted with errors,
which complicates the evaluation and comparison
of residual values for different optima.

• Redundant computations can be avoided by stor-
ing and recognizing local optima that were al-
ready found in earlier computations [13].

• Other optimization algorithms can be applied, for
example Levenberg-Marquardt. Different clus-

ters might even be optimized with different al-
gorithms, which might be particularly useful for
large models with many variables and parame-
ters. Hyper-heuristics [12] can help to identify
the suitable algorithms for each subproblem.

References

[1] A. Antoniou, W. Lu. Practical Optimiza-
tion, Algorithms and Engineering Applications,
Springer Verlag, 2007.

[2] J. Nocedal, S. J. Wright. Numerical Optimiza-
tion, Springer Series in Operations Research,
2000.

[3] A. Elsheikh and W. Wiechert. Automatic sensi-
tivity analysis of DAE systems generated from
equation-based modeling languages. Pages 235-
246 in C. H. Bischof, et al. (editors). Advances
in Automatic Differentiation. Springer, 2008.

[4] A. Elsheikh, S. Noack and W. Wiechert. Sensi-
tivity analysis of Modelica applications via auto-
matic differentiation. In 6th International Model-
ica Conference, Bielefeld, Germany, March 3-4,
2008.

[5] A. Griewank. Evaluating Derivatives: Principles
and Techniques of Algorithmic Differentiation,
Frontiers in Applied Mathematics, SIAM, 2000.

[6] X. Ke. Tools for sensitivity analysis of Model-
ica models, Master Thesis, University of Siegen,
2009.

[7] F. E. Cellier. Continuous System Modeling.
Springer Verlag, 1991.

[8] K. Murota. Systems Analysis by Graphs and Ma-
troids, Springer Verlag, 1987.

[9] R. Tarjan. Depth-First Search and Linear Graph
Algorithms, SIAM Journal on Computing 1
(1972): 146-160.

[10] H. Elmqvist and M. Otter. Methods for tearing
systems of equations in object oriented model-
ing. In ESM’94 European Simulation Multicon-
ference, Barcelona, Spain, June 1-3 1994.

[11] G. Kron. Diakoptics - The piecewise solution of
large-scale systems. MacDonald & Co. London,
1963.

[12] E. Özcan, B. Bilgin, and E. E. Korkamz. A com-
prehensive analysis of hyper-heuristics, Intelli-
gent Data Analysis 12 (2008): 3-23.

[13] C. Voglis and I.E. Lagaris. Towards ideal multi-
start. A stochastic approach for locating the min-
ima of a continuous function inside a bounded
domain. Applied Mathematics and Computation
213 (2009): 216-229.

