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Abstract 

In this paper, the overall modeling approach for an 
optimized control of a hot-gas cycle with its different 
components for solar thermal power plants is pointed 
out. 
For control purposes a linear model-based controller 
(MPC) was implemented in Modelica based on an 
external state-of-the-art QP solver linked to the 
Modelica model. 
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1 Introduction 

1.1 Background 

One possible answer to address climate change is 
using solar instead of fossil energy. Among other 
technologies central receiver systems (CRS) using 
air as heat transfer medium are being investigated. A 
demonstration plant (STJ) has just been completed.  
The STJ uses 18000 m² of sun-tracking mirrors 
(heliostats) to heat up air to 700 °C which in turn 
generates superheated steam, driving turbine and 
generator. A storage system can take up the thermal 
energy for one full-load hour. By adjusting the rate 
of the volume flow of two blowers, it is possible to 
charge or discharge the storage during operation. The 
Virtual Institute of Central Receiver Power Plants 
(vICERP) has been founded to solve the demanding 
requirements for the optimal plant control under the 
strongly fluctuating energy input. 

1.2 Scope of Paper  

In this paper, the overall modeling approach for an 
optimized control of a hot-gas cycle for solar thermal 
power plants is pointed out. A detailed description of 
the modeling of the receiver and the heliostat field 
can be found in an affiliated conference paper by 
Ahlbrink et al. [1]. The emphasis of the modeling 
work lays on the development of dynamic compo-
nent models to be used in control systems. Depend-
ing on the control task, the discretization has to be 
adapted. Main components of the hot-gas cycle are 
the solar thermal receiver and the storage system. 
The steam cycle is preliminarily only included as 
heat sink. 

2 Modeling 

The modeling efforts are shared among the vICERP 
partner institutions. Therefore, it is crucial to use a 
common model setup to ensure a proper use of the 
models. A common test platform provides the neces-
sary interfaces, so that new, improved modules can 
easily be integrated and tested. The models are based 
on the open source library Modelica_Fluid [2]. The 
vICERP library uses a finite volume approach with 
staggered grid method implemented with flow and 
volumes elements [3]. The mass and energy balances 
are considered in the volume element. A formulation 
of the balance equations from Hirsch [4] is imple-
mented using pressure and specific enthalpy as state 
variables. The momentum equation is reduced to a 
pressure drop equation and formulated in a flow 
element. Models like the receiver, storage system, 
steam generator are setup in a way that the models 
end with a flow element. Thus, to the outside they 



behave like a pressure drop element. Volume models 
are needed to interconnect the components.  
Figure 1 shows the top-level of the model developed 
in Dymola/Modelica. Several different components 
can be identified in the figure: the heliostat field and 
receiver on the top left, the storage in the middle, a 
simple model of the water steam cycle on the right 
and the two blowers on the bottom right. The follow-
ing sections give a brief introduction to the models. 
 

 
Figure 1. Screenshot of the model in Dymola 

 

2.1 Heliostat field and Receiver 

The 2200 heliostats that focus the sunlight onto the 
receiver are calculated by a special Monte-Carlo ray-
tracing code, called STRAL [1], which generates a 
flux map on a surface which coincides with the re-
ceiver. The receiver is modeled in Modelica. The 
output is an averaged temperature for the air mass 
flow entering the hot-gas system. 

2.2 Hot-Air Pipes and Blowers 

The models for hot-air pipes are simplified using one 
volume and one flow element for each pipe. The 
blower models include the characteristic curve of the 
blower provided by the manufacturer. Implemented 
in a lookup table, this map allows the calculation of a 
resulting mass flow given the power input and pres-
sure difference between inlet and outlet port of the 
blower. 

2.3 Storage 

A thermal storage system is used as a buffer that 
stores energy at times of high irradiances and enables 
operation of the plant after sunset or during periods 
of reduced solar input. The developed storage model 
enables the analysis of different operation conditions 
of the power plant. The storage behavior is similar to 
that of a regenerator. The hot air flows through the 
storage material and heats it up. During discharge, 
the air flows in reverse direction and cools down the 
storage material, while being heated up.  
The storage model is divided into storage cells. Each 
cell element describes the characteristic material and 
flow phenomena, which are included in differential 
equations. Thus, each cell element computes two 
temperatures which represent the local temperature 
of the storage material and the local temperature of 
the fluid.  
The model enables the description of charging, dis-
charging and stand-by operation. Additionally heat 
losses during stand-by periods are calculated. Thus, 
temperature profiles inside the storage can be com-
puted for any time in the simulation process.  
Figure 2 shows the temperature profile for the 100%- 
and 0%-storage capacity load situation. 
 

 

Figure 2. Temperature profile of the storage system for 

100%- and 0%- storage capacity 

 

2.4 Heat Sink 

Whereas in the final system the steam cycle will be 
modeled in detail, it is – at this stage – merely inte-
grated as a heat sink, featuring qualitatively the 
steam cycle’s anticipated behavior. 



3 Control 

3.1 Basic automation scheme 

The simulation of the operational behavior of the 
complete plant requires an integrated control scheme 
within the model to ensure compliance with given 
limits of absolute and gradient values. As a first con-
cept, a basic automation scheme has been developed 
based on a wiring of SISO control loops with PID 
controllers. This scheme should on one hand assure a 
safe operation of the plant under normal operation 
conditions and on the other hand be a measure of 
performance for more sophisticated control schemes. 
The tuning of the different controllers has been done 
in MATLAB using a response optimization tech-
nique. An extract of the scheme is depicted in Figure 
3. 
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Figure 3. Basic automation scheme 

 
The measurement signals for the control scheme are 
different volume flows and temperature information. 
Actuating variables are the speed of the two blowers 
and different valves located in the air cycle. The 
main goal of the control scheme is to maintain the 
outlet air temperature of the receiver constant at 
680 °C. This is achieved by controlling the air vol-
ume flow through the receiver. As a consequence of 
an increasing volume flow through the receiver, the 
temperature of the outgoing air decreases. The tem-
perature difference from the design point is used in 
an outer control loop of a cascaded structure, which 
feeds the required volume flow as setpoint to the in-
ner control loop. The inner loop accesses two actua-
tors for adjusting the volume flow, a blower and a 
valve mounted directly after the blower. The blower 
is obviously necessary to generate the air flow. The 
use of the valve is justified for two reasons. First, the 
blower itself has a low pressure drop during stand-
still periods such that an airstream just flows through 
it if the stream is generated by the other blower in-

stalled in series. Second, the blower is limited to a 
minimal rotational speed. Therefore, the valve is 
closed appropriately to set volume flows below the 
threshold given by the blower itself. 

3.2 Model predictive control 

The vICERP project includes the application of a 
model predictive controller (MPC). This makes use 
of the dynamic model of the plant that has been de-
veloped for the simulation to predict future behavior 
of the plant with regard to changes in actuating vari-
ables. 
With an MPC approach, it is also possible to include 
a natural objective function (maximize produced en-
ergy, minimize risk of boiler shutdown during tran-
sients, minimize time to start-up etc.) as well as im-
posing first-principle constraints such as bounds on 
variables or periodicity constraints. 
The scope of this paper is limited to a linear model 
predictive controller, which aims at demonstrating 
the concept as well as the basic software coupling. 
It is the goal of the project to make extensive use of 
the full nonlinear model of the plant to find an opti-
mal controller that works in nominal operation as 
well as during start-up, shut-down and during sudden 
changes in the weather conditions (if these changes 
can be predicted, this prediction should be taken into 
account). This will be described in more detail in the 
outlook of this paper. 

3.3 Linearized model 

The MPC controller is based on a linear state space 
model of the form: 
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This model was obtained from the non-linear Mode-
lica model by using the linearizeModel command. 

3.4 MPC implementation 

Based on the above representation the controller is 
able to predict the future behavior of the plant re-
garding to a future trajectory for the input (and pos-
sible disturbances). This can be expressed in an 
equation of the form 

( )

( ) ( 1) ( ) ( )
m

Y k

x k u k U k D k

=

Ψ ⋅ + Υ ⋅ − + Θ⋅∆ + Ξ ⋅
 (2) 

for suitable matrices Ψ , Υ , Θ  and Ξ  [9]. The 
different terms represent the free and forced response 
of the plant, together with the response to future tra-
jectories of the inputs and disturbances. Combined 



with a given reference trajectory for the outputs and 
additional linear constraints on the states and inputs, 
this can be reformulated as an optimization problem 
of the form 
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with Hessian matrix H  and gradient vector G . This 
is a standard optimization problem known as the 
Quadratic Programming (QP) problem. 

3.5 QP Solver 

The MPC controller requires the above quadratic 
program to be solved at each sampling time. This is 
carried out with the QP solver qpOASES [5], which 
uses an online active-set method particularly suited 
for MPC problems [6]. 
To make qpOASES, which is written in C++, fully 
compatible with Modelica, a C interface has been 
written. By using Modelica’s external objects, the 
QP solver is able to retain memory between calls. 
This fact can be expected to grow importance once 
the MPC controller is extended to nonlinear models. 
The Modelica interface to qpOASES is available 

upon request from the authors of the paper (LGPL 
license). 

4 Simulation Results 

For evaluation of the model and different control 
schemes the simulation results according to the fol-
lowing scenario are presented in Figure 4. 
The plant is operating in its stationary design point 
(i. e. outlet temperature at the receiver is at 680 °C) 
with a constant solar irradiation. At time t = 100 s, a 
sinusoidal disturbance with a period of 600 s and an 
amplitude of 50% of the previous irradiation acts on 
the input. After 1200 seconds the input remains con-
stant again. 
The upper part of the figure shows this disturbance 
of the solar irradiation. In the lower part the re-
sponses of the air outlet temperature at the receiver 
with different controllers are depicted. The main goal 
of this feedback control is disturbance rejection, i. e. 
it should assure a constant outlet temperature by ad-
justing the air volume flow through the receiver ap-
propriately. 

Figure 4. Simulation results 

 



The first case is just an open loop simulation of the 
system, i. e. no control actions are performed at all 
and all manipulated variables, especially the set-
points of the blowers, remain constant. 
The second curve shows the resulting characteristics 
if the control scheme as depicted in Figure 3 based 
on PI controllers is used. In this case the maximal 
deviation of the outlet temperature is about 15 °C. 
In the following two cases the implemented MPC-
block was used to control the air temperature. There-
fore the PI controller in Figure 3 which uses the air 
temperature as measurement variable in the outer 
control loop was simply replaced by the MPC-block. 
The inner controllers directly manipulating the actors 
remain the same. Although the model-based control-
ler has inherently the ability to cope with systems 
with multiple in- and outputs, it this case it is just 
used with a single in- and output. The controller has 
a sampling interval of 0.5 s and uses an internal 
model with 25 states at a discretization interval of 2 
seconds. It has a prediction horizon of np = 150 and a 
control horizon of nu = 30 (i. e. it predicts the re-
sponse of the plant 300 seconds in the future). As 
one can see in Figure 4, the controller shows compa-
rable results to the PI controller. 
In the fourth case, the MPC-block was extended to 
also incorporate the influence of the disturbance on 
the system by feedforward control. If the supplied 
solar energy can not only be measured, but also pre-
dicted (e. g. by weather forecast or vision-based [8]), 
it is possible that the MPC also uses this information 
for prediction. In this case the controller achieves the 
best performance with only minimal deviation from 
the setpoint at 680 °C. 

5 Conclusion 

In this paper we have presented a first-principle 
model for a central receiver solar power plant with 
open volumetric receiver. The model includes the 
different components of the plant, e. g. receiver, 
storage, and is used for simulation and optimization 
purposes of both the separate components and also 
the plant behavior as a whole. 
For control purposes a generic linear model-based 
controller (MPC) was implemented and achieves 
reasonable results. The implementation is based on 
an external state-of-the-art QP solver linked to the 
Modelica model for the calculation of optimal con-
trol actions. 
Future work aims at not only using optimal control 
for the air cycle as presented in this paper, but also to 
extend this approach to other areas of the plant, e. g. 
storage regulation. 

6 Outlook 

6.1 Non-linear MPC 

A non-linear MPC controller is obtained if the linear 
state space model (1) is a replaced with a continuous 
state space model of the form: 

( ) ( ( ), ( ), , )
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The dynamics are now described by a non-linear or-
dinary differential equation (ODE) and the discrete 
time k has been replaced by the continuous time t. 
Included is also the dependence of a set of parame-
ters p. 
A model of the form (2) is always available since 
simulating a translated Modelica model is always 
equivalent to integrating a (possibly hybrid) differen-

tial-algebraic equation, due to construction of the 
Modelica language [10]. 
By adding a quadratic objective function and intro-
ducing the prediction horizon Tp and control horizon 
Tc, we obtain an optimal control problem in differen-

tial-algebraic-equations of the form: 
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(5) 
where P is a positive definite and Q is a positive 
semi-definite matrix. Bounds are denoted by the sub-
script “ub” and “lb” for upper and lower bounds re-
spectively. 
Problem (5) is an infinite dimensional optimization 
problem that can be efficiently solved by parameteri-
zation of both the control u and the state x using a 
simultaneous method such as direct multiple shoot-

ing and collocation. 
State-of-the-art numerical methods for solving such 
and similar dynamic optimization problem have been 
implemented in the software package ACADOtoolkit 
[12], developed by OPTEC. The software is avail-
able open-source under the LGPL license, allowing it 
to be linked also with commercial code, and work is 
underway to fully integrate it with Modelica. 
The integration consists of two parts. Firstly, it 
should be possible to call ACADOtoolkit from Mod-



elica. This is made possible by implementing a plain 
C interface which can be called from Modelica code 
using external objects just like the qpOASES inter-
face. ACADOtoolkit is written exclusively in C/C++ 
and avoids linking with external software, so it is 
very suitable to use together with Modelica tools as 
well as on embedded systems. Real-time optimal 
control is one of the aims of the project. 
The second, much larger part of the integration con-
sists of extending the software so that it can use 
models formulated in Modelica. Small dynamical 
models can easily be coded directly in C++, but for 
complex models, a better solution is to import the 
model equations into ACADOtoolkit. This will un-
doubtedly require the extension of the software to 
deal with e.g. hybrid systems and integer valued con-

trols. 
There are efforts to standardize the interaction be-
tween equation-based, object-oriented modeling lan-
guages such as gProms and Modelica on one hand, 
and computer algebra tools and other mathematical 
software on the other [7]. The two open-source 
Modelica projects OpenModelica and JModelica 
[11] both offer the possibility to export the flattened 
simulation problem (i. e. variables, initial values, 
model equations, etc.) in the ModelicaXML format 
which in turn uses MathML to describe the model 
equations.  
To make also ACADOtoolkit conformant with this 
standard, so that models defined in ModelicaXML 
code can used by the software, an XML module is 
being developed. This module parses the Modeli-
caXML code and translates the model equations into 
ACADOtoolkit’s internal (symbolic) representation. 
A further standardization is to use the Optimica, a 
language extension for the formulation of optimal 
control problems, to formulate the optimal control 
problems. This provides an abstraction which is use-
ful to help engineers and scientists formulate optimal 
control problems in a structured way [11]. 
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