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Abstract

In this paper a Modelica library for interactive
simulation and advanced visualization called Ex-
ternalDevices is introduced and presented. Pro-
viding support for standard input devices like key-
board and joystick as well as for communication
via UDP and shared memory, this library allows
the user to interact with a running simulation
and process the output data of the simulation in
other processes capable of UDP connections. An
advanced visualization system replaces the stan-
dard Dymola visualization and offers additional
features like full-screen viewing, transparency and
support for flexible bodies.
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Introduction

Simulations with Modelica normally are not de-
signed for interactive control. In the standard
Modelica 3.1 library, no blocks for input devices
or other control possibilities are existent. Never-
theless it can be help- and useful to interact with
a running multi-physics simulation, either to re-
duce the effort needed for the generation of input
data for the simulation, or to react directly to the
results of a running simulation.
The integrated visualization of the Modelica
MultiBody Library is vendor-specific. It is there-
fore limited to the specified visualization methods
provided by the simulation tool. The visualization
definitions of Modelica 3.1 are limited to some ba-
sic features like some elementary shapes and un-
textured .dxf CAD files.
To overcome the missing interaction and visual-
ization possibilities, the ExternalDevices Library
provides a set of blocks and techniques to allow
interactive simulations, as well as an advanced

real-time visualization of the running simulation,
considerably extending the scope of operation es-
pecially for multi-body simulations. The Exter-
nalDevices library is structured in the following
functional packages:

∙ Input devices: Blocks for the direct control of
simulation states by the user

∙ Communication devices: Blocks allowing the
simulation to communicate with other pro-
cesses via network or shared memory

∙ External visualization: Blocks and models re-
placing vendor-specific visualization systems
and adding additional visualization possibili-
ties.

The ExternalDevices library links either to
static or dynamic C++ libraries to provide this
additional functionalities. It is available for Dy-
mola 7.x, in a version for Windows, a version for
Unix/Linux is planned. Every Modelica imple-
mentation able to link external C libraries can use
the ExternalDevices library and the visualization
system.

1 Input devices

Input devices are needed for interactive control of
the simulation states, for example to trigger events
or to control actors of a multi-body simulation.
For this purpose the ExternalDevices library pro-
vides blocks for three common PC input devices:

Keyboard: This block allows the monitoring of
single keyboard keys, and has a boolean output
for the chosen key state. Several blocks can be
used parallel, each with a selectable key ID like
VK Return for the return key.



Figure 1: Input devices blocks

Joystick: This block includes support for three
axis, eight buttons joysticks for Modelica. The
joysticks must be configured and calibrated cor-
rectly in the Windows system control panel. Sev-
eral blocks at the same time are usable with sep-
arate joystick IDs, allowing the use of more than
one joystick attached to the PC. The three out-
puts are from the type Real and are normed from
-1 to 1 for each joystick axis.

SpaceMouse: The SpaceMouse block includes
support for the 3dConnexion Spacemouse, a six
DOF input device originally developed at the In-
stitute of Robotics and Mechatronics of the ger-
man aerospace center (DLR). This devices con-
sists of a pressure-sensible handle, which can
be pushed and rotated to manipulate objects in
three-dimensional space. The output connectors
of this block also are normed from -1 to 1 and all
buttons of the Spacemouse are retrievable via a
boolean output vector.

2 Communication devices

It is often useful to control a simulation via net-
work or to process the simulation output data
in another program or simulation. The Exter-
nalDevices library supplies the user with blocks
to communicate with external processes via UDP
or Shared Memory. As an example, one simulation
can provide input data for another simulation via
UDP.

Figure 2: Network devices blocks

UDPRecieve block: This block introduces an
UDP client communication input for Modelica.
The incoming data must be binary coded double
vectors, in the form [double 1,.....,double n] with
the selectable length n. The listening port can be
selected and must be unique on the system. More
than one block in a model may be used under this
premise.

UDPSend block: This block allows the send-
ing of Real vectors with selectable length n. Pa-
rameters are the target port and IP address. More
than one block may be used in a model.

UDPServer block: Combination of UDPSend
and UDPRecieve functionality.

Shared memory Block: A shared memory
block, using the QT framework from QT Soft-
ware [1] allows the communication between two
processes on the same computer system. Support-
ing Real, Integer and Boolean vectors it can be
used as an interface to other parallel running sim-
ulations or processes with the same QT shared
memory interface. Several blocks can be used
within the same model by defining different mem-
ory storage IDs.

3 A model-based approach for
visualization

Including the complete Modelica 3.0 standard for
visualization of multi-body models, this library
furthermore allows the user to build more complex
visual environments within the Modelica model,
to be simulated on an external visualization tool,
DLR SimVis. The visualization package uses net-
work communication to transmit the visualization
data from the simulation to the external visual-
ization tool. This tool, DLR SimVis, provided to-
gether with this library is based on OpenGL [4]
and the OpenSceneGraph [2] 3D scenegraph.
The main purpose is the visualization of
multi-body simulations, replacing vendor-specifig
graphic engines with a presentable graphic engine,
supporting full-screen viewing and a large variety
of textured 3D CAD file formats.
Every object visualized in the external viewer is
provided by a visualization component in Model-
ica, containing all necessary data for correct visual
representation.



3.1 Object-oriented approach for visu-
alization components

The object-oriented approach of the ExternalDe-
vices visualization system easily allows to inte-
grate the visualization components in to physical
components. The complete informations neces-
sary for the visualization are already existent in
the physical component and can be used in the
visualization block. Figure 3 shows the integra-
tion of a visualization block in the model of a
spring. The information about the spring’s po-
sition, orientation and length is available via the
frame connectors, other parameters like winding
number, wire diameter e.g. can be chosen via pa-
rameter dialog.

Figure 3: Integration of the visualization compo-
nent in a physical model

3.2 Comparison with existing physical
visualization systems

Most existing visualization systems rely on a cen-
tral configuration file defining the scene and the
input channels for a specific visualization task.
The MathWorks VR Toolbox [5] for example uses
VRML Files, containing the complete kinematic
and degrees of freedom for scene manipulations
as well as the CAD Data. In the correspond-
ing Simulink model, the VR Block provides the
inputs for the desired degrees of freedom in the
scene. These inputs are now connected with the
according signals of the Simulink physics model.
This leads to increased configuration efforts if the
model has to be changed, because both the VRML
Configuration and the signals have to be adapted.
Another example for the separation of model and
visualization system is the VisEngine of Aerolabs
GmbH [6]. The VisEngine uses a configuration file
defining the used CAD data for the scene and the
input channels (e.g. UDP, tables from the file sys-
tem, etc.) for moving the CAD objects.

In both cases, a change in the model requires a
modification in the visualization. With the object-
oriented approach of ExternalDevices combined
with Modelica, this is not necessary, because of
the complete integration of the visualization into
the model components.
Because of an additional software layer, hidden
from the user, there is no need for complicated
additional signal connections. The visualization
data is collected in a data core controlled by an Ex-
ternalObject construction and transmitted to the
external visualization viewer (see Figure 4).

Model layer

Software
layer Data core

Visualization

Figure 4: Model layer and software layer with data
administration (hidden)

3.3 Modified Modelica 3.0 standard li-
brary

One strength of Dymola’s visualization system
is the automatic generation of the scene via
the visualization properties of every multi-
body system. This is done via implementing
a visualization definition in every part of the
Multi-body library. These definitions all inherit
the Modelica.Mechanics.MultiBody.Visualizers-
.Advanced.Shape block, which is the connection
to the Dymola visualization. By replacing this
block with a modified variant, the complete model
visualization is redirected to the external visu-
alization. This modification allows to use every
existing model with the external Visualization.
Since Modelica 3.1 the vendor-specific library
elements like the Shape block are grouped in
an additional service library ModelicaServices.
Analogue to the modified Modelica library, it is
possible by providing a customized ModelicaSer-
vices implementation to redirect the visualization
data to the external viewer DLR SimVis.



3.4 External viewer software DLR
SimVis

The visualization data is sent from the simulation
process via network to the external viewer soft-
ware SimVis. This software is responsible for the
interpretation of the visualization data and for the
rendering of the scene. Because of the use of a
network communication, the Viewer software does
not have to run on the same system as the simula-
tion, and therefore more computing power for the
simulation can be provided. Based on the open
source scene graph OpenSceneGraph [2] a wide
range of formats for CAD data is supported. The
continuing development of OpenSceneGraph pro-
vides the base for highly detailed visualizations.
Utilizing the ffmpeg video en/decoding library [3],
several video codecs for video grabbing are sup-
ported. The following features already are imple-
mented:

∙ Fullscreen mode

∙ Support for multiple cameras

∙ Multi-monitor support

∙ Textured CAD files (.dxf, .stl, .3ds, .obj, ...)

∙ Video grabbing, formats: (MPEG4, MS
MPEG4 2/3 (.avi), Flash video (.flv), Huff-
man Encoding (lossless), Windows Media
Video (.wmv))

∙ Video grabbing with free configurable bit rate
and replay speed

∙ Wireframe mode, Stereo mode (anaglyph and
indirectly by OpenGL graphics card drivers)

∙ Precise replay controls including a jog-dial

3.5 Object-oriented network protocol

In order to reduce the amount of visualization data
to be transported over the network connection, an
optimized protocol is necessary. In the implemen-
tation of the ExternalDevices library, an object-
oriented approach with data and packet objects
has been chosen. While the data objects handle
the data storage and the tasks of serialization /
deserialization, the packet objects are responsible
for data object administration. This includes an
incremental packaging of data, where only data
objects, which changed in the last time step are

included in the transmitted data. A lossless trans-
port protocol provided, like TCP/IP, this method
reduces the needed communication bandwidth sig-
nificantly, because static properties of visualiza-
tion elements must not be communicated every
time step.
Every packet is identified and assigned to a visual-
ization element by an unique, automatically gen-
erated ID. Figure 5 provides an overview of the
network communication architecture.

4 Visualization package content

The visualization package is structured in sub-
packages for Shape blocks, Camera blocks, Light
blocks, Energy Flow blocks and Effect blocks.

4.1 The UpdateVisualization block

The UpdateVisualization block is responsible
for the integration of the visualization blocks in
the simulation process. Similar to the Multi-
Body.World block, it will be automatically
inserted as an inner component if a visualization
block is used in the model. The UpdateVisu-
alization block controls parameters like the IP
address and port for the communication with the
visualization software SimVis and can be used to
disable the complete visualization.

During a simulation run, the block triggers a
time event every time visualization data shall be
sent to SimVis. This update interval time can be
varied via a parameter and should be < 0.04 s for
25 frames per second during real-time simulations.
If the update time event is triggered, every block
sends its data to the data core triggered by the
Boolean variable UpdateVisualization.send.

4.2 Shape blocks

Every Shape block has a frame connector as input.
The resulting forces and torques of such a block is
zero, so the block only has visual and no dynamic
or kinematic effects. This blocks can be used as
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Figure 5: Basic principle of visualization network architecture

integrated components in a Modelica multi-body
model:

Figure 6: Shape blocks

Elementary Shape: This block represents the
supported basic shapes, such as boxes, spheres etc.
The available primitives are:

Basic shape Existent in Existent
type Modelica 3.0 in library

Box Yes Yes
Sphere Yes Yes
Cone Yes Yes + Features
Spring Yes Yes
Cylinder Yes Yes
Pipe Yes Yes
Beam Yes Yes

Gearwheel Yes Yes + Features
Coordinate
System

Yes Yes

Grid No Yes

Every ElementaryShape can be parametrized in

size, color, transparency and reflection behavior
(for specular highlights). For the more complex
shapes like spring, gearwheel and cone, additional
parameters can be set. Beyond the standard pa-
rameters, required by the Modelica 3.1 standard,
some additional parametrization is possible, for
example the operating angle of gearwheels allows
the construction of bevel gears.

FileShape: The FileShape block allows to use
3D CAD models, supporting numerous file for-
mats like .obj, .dxf, .3ds, .stl, and every other
file formats supported by the OpenSceneGraph
plug-in system. The key features of this block
are support for textured 3D models and addi-
tional parameters like transparency and a wire-
frame modus. The loaded 3D model can be scaled
in x,y,z directions.

Line The Line block implements linear or Bezier
interpolated lines, with n control points relative to
the frame connector of the block.

Text Shape: This block allows to place 2D texts
in the scene, aligned to a specified direction or
to the screen. Font, character size and color are
parameterizable.

Text Shape with Value: In addition to the
TextShape, this block has a Real input connector.
The text in the visualization is followed by the



input value of this connector, allowing the display
of simulation data in the visualization.

4.3 Visualization of flexible bodies

Especially for the use in the DLR FlexibleBodies
library, a visualization module for flexible bodies
is available in the library. For topologically sim-
ple objects (e.g. beams or tori) a parameterizable
surface can be used, visualizing an array of points
(see Figure 7)
For more complex models, an spatial interpolat-

Figure 7: quadratic, parameterizable surface

ing algorithm is implemented. This algorithm al-

Figure 8: Deformed(wireframe) component of an
industrial robot

lows to deform CAD models visually according to
a displacement set of n control points (n << nCAD)
and interpolates the CAD data points spatially
between the control points. With this algorithm
the number of points to be communicated to the
visualization system can be reduced drastically, as
only the displacement set has to be calculated and
submitted to the visualization (see Figure 8).

4.4 Energy flow visualization

The visualization package supports the visual-
ization of energy flows with several blocks (see
Figure 9). The energy flow is represented visually

Figure 9: Energy flow blocks

by a transparent pipe (can be deactivated) with
moving arrows inside. The spatial configuration
of the pipe is specified within the model by
parameterizing the single components of the
pipe (MultiBody Library compatible) with infor-
mations like length, diameter, radius of curved
segments etc. The basic flow elements available
are StraightPipe, CurvedPipe and FlexiblePipe
(flexible interpolated). For visualization purposes,
the color, size and speed of the arrows can be
dynamically changed during the simulation.

Every energy flow pipe has to begin with a
FlowBegin block and ends with an FlowEnd
block. The start position of a pipe is defined by
a MultiBody frame connector, whereas the flow
speed of the pipe indicators can be set by an
Real input of the FlowBegin block. The inter-
connection between the pipe segments is handled
by a special connector containing the connecting
frame of the segment, the flow through the pipe
and an ID of both connected pipe segments. The
IDs are necessary to provide information about
the assembly of the energy flow system for the
visualization software as a double-linked list.
In order to avoid kinematic loops, the frame
information of the pipe segments is encapsulated



Figure 10: Car Radiator with coolant flow

in the connector and should not be accessed
directly. If a connection between two defined
points is desired, the FlexiblePipe block can be
used to exactly construct a pipe connecting these
two points. This is done by a Bezier interpolation
algorithm and can be updated during the simu-
lation to visualize a flexible connection between
two moving points.

4.5 HUD Elements:

This objects support the generation of simple
head-up-displays, allowing the placement of text,
bar graphs and bitmaps. This elements can be
combined to form e.g. analogue instruments (see
Figure 11) or digital gauges. The displayed val-
ues are updated during the simulation and allow
a direct insight into the connected states of the
simulation. The head-up-display is placed as a 2D
overlay over the 3D scene.

Figure 11: Several bitmaps combined to an ana-
logue tachometer and rpm gauge

4.6 Cameras

The visualization system supports multiple cam-
era views. If there is no dedicated camera in the
model, a standard view will be used. For every
new camera block in the model, an additional sub-
window is available in the visualization viewer,
showing the scene from the cameras perspective.
Every camera can have its own background color,
viewing distance and field of view. A full screen
mode allows to display the camera perspective on
the complete display, multiple displays are sup-
ported. The following camera blocks are available:

FreeCamera: A free movable camera, initial-
ized at the camera-frame connectors start posi-
tion. The cameras position and perspective can be
adjusted in the viewer with the computer mouse.

FixedCamera: The perspective and position of
this camera is fixed. The position of the camera
only can be changed by the simulation itself, and
no user interaction is possible. The direction of
the camera view can be parametrized.

FollowCamera: This camera is centered on the
position of the camera’s reference-frame connec-
tor. As the reference connector moves, the camera
keeps focused on this position. The position of the
camera is defined via the camera frame connector.

DynamicFollowCamera: The position of this
camera is defined, like the FollowCamera via the
camera frame connector position. But unlike the
Follow Camera it is no direct coupling but a de-
layed following behavior characterized by a PT 1
system. The time constant of this following be-
havior can be parametrized.

AttachedCamera: A camera with free ad-
justable perspective, but with a position defined
by the camera’s reference-frame connector. This
camera is useful for the observation of a dedicated
object from different perspectives.

4.7 Lights

To create a well lightened scene, this sub-package
provides Light blocks. Without a dedicated light-
ing block in the model, a standard light will be
created and placed at the position of the camera.



Figure 12: Lighting blocks

Light block: This is the most flexible lighting
block, including the complete OpenGL definition
for lights. Ambient, specular and diffuse light col-
ors as well as directional lighting and attenuation
of light are parameterizable.

Spotlight block: To reduce the configuration
effort, this block provides a preconfigured spot-
light with a selectable color and a spot angle and
direction. The specular and diffuse color are set
to the same value as the light color.

Diffuse Light block: This block provides a pre-
configured directional light, with selectable color
and light direction. This light can be used for
environment lighting, as it produces parallel light
rays like sunlight.

4.8 Effects

This sub-package contains blocks for additional vi-
sual effects. In the current release version of the
ExternalDevices library, the available effects are
weather and particle effects.

Weather effect block: Especially for environ-
ment visualization, this block provides the three
effects fog, rain and snow for more realism. The
fog effect, combined with a reduced viewing dis-
tance of the camera can be used to reduce the
viewing distance in the scene, in order to increase
the frame rate of the visualization.
The Rain and Snow effect are done with a parti-
cle system. A wind strength can be parametrized.
All weather effects can be triggered with a boolean
input by the simulation. Weather effects have
no distinct position but are located around every
camera.

Particle effect block: With this block simu-
lation of smoke or fire with variable intensity is
possible. A wind strength can be parametrized as

well as particle size and -lifetime. The ParticleEf-
fect block can be connected to MultiBody systems
with a frame connector defining the position of the
particle origin.

5 Application examples

The following samples are generated with the Ex-
ternalDevices library and are demonstrating se-
lected models with external visualization.

Example 1: Electric motor Figure 13 shows
a electrical engine propelling a rotor. In Figure
14 the associated Modelica model is shown, with
a magnification of the motor. File Shape blocks
are used to represent the CAD Data of the motor
and the rotor, a Flow Shape block visualizes the
energy flow between motor and rotor.

Figure 13: Electrical motor example

Example 2: Hybrid vehicle Figure 15 shows
a screen shot of a visualization of a hybrid vehi-
cle, rendered with SimVis. Advanced rendering
effects like the transparency of the chassis allow
an insight into the car’s components. The sim-
ulation is controlled with a SensoDrive steering
wheel via CAN bus, and a Logitech pedal system
via USB joystick input. In Figure 16 the com-
plete driving simulation, as shown on the FISITA
world automotive conference 2008 in Munich can
be seen. There are actually two simulations run-
ning, a driving simulation and a simulation of a
robot based motion simulation (see also Example
3). The driving simulation renders two camera
perspectives on the left and upper display, while
the motion simulator is shown on the right dis-
play. The motion simulator receives acceleration



Figure 14: Model of the example

and angular velocity data from the driving sim-
ulation and creates a trajectory simulating these
motions.

Example 3: Robot visualization Figure 17
shows a visualization of a KUKA KR500/1 robot
(Source CAD Data: kuka.com) used as motion
simulator. The effects of specular highlights are
visible, generating a more plastic look of the robot.
In this simulation, the robot joint angles are re-
ceived via UDP from the real KUKA KR500/1’s
control computer, the path-planning of the mo-
tion simulator is done in a Modelica model and
transmitted back to the robot control.

5.1 General performance

During internal tests and projects, scenes with
400 dynamically moved objects have been created,
reaching frame rates >25 fps. Models with a mem-
ory sizes up to 600 MB (uncompressed) have been
loaded and used as scenery. With the increas-
ing rendering power of actual graphic processing
units, CAD models with numbers of vertices > 106

can be displayed with acceptable frame rates.

Figure 15: Visualisation of a hybrid vehicle

Figure 16: Driving simulator shown at FISITA
2008

6 Conclusion and Outlook

The ExternalDevices library has shown its useful-
ness during DLR internal tests, especially for cre-
ating dynamic, interactive simulations. The pos-
sibility to interact with the simulation reduces the
effort to generate input trajectories and allows the
user to determine the progress of the simulation.



Figure 17: Visualisation of KUKA KR500/1 in-
dustrial robot

With UDP and shared memory interfaces, the co-
operation of several simulations or reading and
writing to other external sources is feasible.
The complete replacement of vendor-specific visu-
alizations and the shift to a platform independent
set of Modelica blocks allows much more flexibil-
ity in the development of visualization solutions.
The further development of the library will now
focus to extend the support of input instruments
(e.g. six-axis, force-feedback Joysticks) and the
improvement of the visualization, with a new,
modular HUD system and full integration of par-
ticle systems. Another very focused project aims
to integrate plug-ins for loading large terrain
databases into the SimVis framework.
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