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Abstract

This paper reports a new Modelica-based open source
project entitled JModelica.org, targeted towards dy-
namic optimization. The objective of the project is
to bridge the gap between the need for high-level de-
scription languages and the details of numerical opti-
mization algorithms. JModelica.org is also intended
as an extensible platform where algorithm developers,
particularly in the academic community, may integrate
new and innovative methods. In doing so, researchers
gain access to a wealth of industrially relevant opti-
mization problems based on existing Modelica mod-
els, while at the same time facilitating industrial use
of state of the art algorithms. In this contribution, an
overview of the platform is presented and the main fea-
tures of JModelica.org are highlighted.

Keywords: Modelica;, Optimica;
Model Predictive Control

Optimization;

1 Introduction

Optimization is becoming a standard methodology in
many engineering disciplines to improve products and
processes. The need for optimization is driven by
factors such as increased costs for raw materials and
stricter environmental regulations as well as a general
need to meet increased competition. As model-based
design processes are being used increasingly in indus-
try, the prerequisites for optimization are often ful-
filled. However, current tools and languages used to
model dynamic systems are not always well suited for
integration with state of the art numerical optimization
algorithms. As a result, optimization is not used as fre-
quently as it could, or less efficient, but easier to use,
algorithms are employed.

More often than not, systems to be optimized are
complex and dynamic. Such problems offer several
challenges at different levels. Much effort has been

devoted to encapsulating expert knowledge in model
libraries encoded in domain specific languages such
as VHDL-AMS [30] and Modelica [44]. While such
model libraries have been primarily intended for sim-
ulation, it is desirable to enable also other usages, in-
cluding optimization. From a user’s perspective, it
is desirable that the optimization specification is ex-
pressed in a high-level language in order to provide a
comprehensive description both of the dynamic model
to be optimized and of the optimization problem. An-
other aspect that requires attention is that of enabling
flexible use of the wealth of numerical algorithms
for dynamic optimization, based on the high-level de-
scriptions specified by the user.

Several common engineering tasks are conveniently
cast as optimization problems. This includes param-
eter estimation problems to obtain models that match
plant data, design optimization for improving product
performance, and controller parameter tuning. In ad-
dition, dynamic optimization is a key to implementing
for example model predictive controllers and receding
horizon state estimators.

This contribution reports a new Modelica-based
open source initiative targeted at dynamic optimiza-
tion entitled JModelica.org. JModelica.org [36] is a
novel open source project with the mission:

“To offer a community-based, free, open source, ac-
cessible, user and application oriented Modelica en-
vironment for optimization and simulation of complex
dynamic systems, built on well-recognized technology
and supporting major platforms.”

JModelica.org is primarily focused on dynamic opti-
mization of Modelica models. To meet this end, JMod-
elica.org supports Optimica, which is an extension to
the Modelica language that offers language constructs
for encoding of cost functions, constraints and the op-
timization interval with fixed or free end points. The
platform consists of compilers for translating Model-



ica and Optimica models into C and XML code, a
C API for evaluation of model equations and Python
bindings to enable scripting and custom algorithm de-
velopment. The software is distributed freely under
the GPL license.

The paper is outlined as follows. In Section 2, a
review of optimization tools and the Optimica exten-
sion are given. Section 3 describes the JModelica.org
platform. Previous case studies performed based on
JModelica.org, and the opportunities provided by ab-
stract syntax tree access are discussed in Section 4. In
Section 5, an example of a model predictive control
application is given. The paper ends with a summary
and comments on future work in Section 6.

2 Background

It is typical that numerical algorithms for dynamic op-
timization is written in C or Fortran. Often, the user
is required to encode the dynamic model and the opti-
mization specification in the same languages. While C
and Fortran enables efficient compilation to executable
code, such languages are not well suited for encoding
of dynamic models and optimization problems. In par-
ticular, it is difficult to write the code in a modular way
that enables reuse. This observation was made several
decades ago in the context of modeling and simulation
and resulted in high-level modeling languages, includ-
ing ACSL and later Omola, [4], VHDL-AMS [30], and
Modelica [44]. See [5] for a comprehensive overview
of the evolution of continuous-time simulation lan-
guages and tools.

2.1 Optimization Tools

There are several tools for optimization on the market,
offering different features. In essence, three different
categories of tools can be distinguished, although the
functionality is sometimes overlapping. Model inte-
gration tools addresses the problem of interfacing sev-
eral design tools into a a single computation environ-
ment, where analysis, simulation and optimization can
be performed. Examples are ModelCenter, [41], Op-
tiY, [40], modeFRONTIER [21], and iSIGHT, [11].
Typically, such tools are dedicated to design opti-
mization of extremely complex systems which may
be composed from subsystems encoded in different
tools. Accordingly, model integration tools typically
offers interfaces to CAD and finite element software as
well as simulation tools for, e.g., mechanical and hy-
draulic systems. As a result of the heterogeneity and

complexity of the target models, models are usually
treated as black boxes, i.e. the result of a computation
is propagated to the tool, but the structure of a par-
ticular model is not explored. Accordingly, heuristic
optimization algorithms which do not require deriva-
tive information or detailed structural information, are
usually employed. In addition, model integration tools
often have sophisticated features supporting model ap-
proximation and visualization.

Several Simulation tools comes with optimization
add-ons, e.g., Dymola [14], gPROMS [42] and Jaco-
bian [37]. Such tools typically offer strong support
for modeling of physical systems and simulation. The
level of support for optimization in this category dif-
fers between different tools. Dymola, for example,
offers add-ons for parameter identification and design
optimization, [18]. gPROMS, on the other hand, also
offers support for solution of optimal control prob-
lems. Tools in this category are usually limited to a
predefined set of optimization algorithms. Integration
of new algorithms may be difficult if the tools do not
provide the necessary APIL:s.

In the third category we have numerical packages
for dynamic optimization, often developed as part of
research programs. Examples are ACADO [39], Mus-
cod II [46], and DynoPC [33], which is based on
Ipopt [48]. Such packages are typically focused on
efficient implementation of an optimization algorithm
for a particular class of dynamic systems. Also, de-
tailed information about the model to optimize is gen-
erally required in order for such algorithms to work,
including accurate derivatives and in some cases also
sparsity patterns. Some of the packages in this cate-
gory are also targeting optimal control and estimation
problems in real-time, e.g., non-linear model predic-
tive control, which require fast convergence. While
these packages offer state of the art algorithms, they
typically come with simple or no user interface. Their
usage is therefore limited due to the effort required to
code the model and optimization descriptions.

The JModelica.org platform is positioned to fill the
gap left between simulation tools offering optimiza-
tion capabilities and state of the art numerical algo-
rithms. Primarily, target algorithms are gradient based
methods offering fast convergence. Never the less,
JModelica.org is well suited for use also with heuristic
direct search methods; the requirements with respect
to execution interface is typically a subset of the re-
quirements for gradient based methods. The problems
addressed by model integration tools is currently be-
yond the scope of JModelica.org, even though its in-



model VDP
Real x1(start=0);
Real x2(start=1);
input Real u;

equation
der(x1l) = (1-x2A2)*x1 - x2 + u;
der(x2) = x1;

end VDP;

Listing 1: A Modelica model of a van Der Pol oscilla-
tor.

optimization VDP_Opt
®(objective=cost(finalTime),
startTime=0,
finalTime (free=true,
initialGuess=1))
® VDP vdp(u(free=true,
initialGuess=0.0));
®@ Real cost (start=0);

equation

® der(cost) = 1;
constraint

@ vdp.x1(finalTime) = 0;
® vdp.x2(finalTime) = 0;

® vdp.u >= -1;

@ wvdp.u <= 1;

end VDP_Opt;

Listing 2: An Optimica optimization specification
based on the van Der Pol Oscillator.

tegration with Python offers extensive possibilities to
develop custom applications based on the solution of
simulation and optimization problems.

2.2 Optimica

The Optimica extension is discussed in detail [1, 2]. In

this paper, a brief overview of Optimica is given and

the extension is illustrated by means of an example.
We consider the following dynamic optimization

problem:
°t
min / "at 1)
u(t) Jo
subject to the dynamic constraint
d1(1) = (1=xa(0))x1 (1) =x2(1) +u(t), x(0)=0
X(t) = x1 (1), x(0) =
2)
and
X1 (l‘f) =0
X2(l‘f) =0 (3)
—1<u(r) <1

The dynamic model (2) of the problem is a van Der
Pol oscillator, and the optimization problem corre-
sponds to bringing the system from initial conditions
x1(0) =0, x2(0) = 1 to the origin in minimum time. In
addition, the transition is to be performed with limited
control authority.

A Modelica model corresponding to the dynamic
system (2) is given in Listing 1. Based on this model,
an Optimica specification can be formulated, see List-
ing 2. Since Optimica is an extension of Modelica,
language elements valid in Modelica are also valid in
Optimica. In addition Optimica also contains new con-
structs not valid in Modelica.

The Optimica program corresponding to the van
Der Pol example can be seen in Listing 2. In order
to specify an optimization problem in Optimica, the
new specialized class optimization is used. Inside
such a class, Optimica constructs, as well as Model-
ica constructs may be used. An instance of the VDP
model is created by declaring a corresponding compo-
nent, @. In order to express that the input u is to be
tuned in the optimization, the Optimica-specific vari-
able attribute free is set to true, and in addition,
an initial guess for u is provided. In order to define
the cost function, a variable, cost @, is introduced
along with a defining equation, ®. Further, the con-
straints are given in the constraint section, which is
a new Optimica construct. In this section, ®-® cor-
respond to the terminal constraints, whereas ®-@ cor-
respond to the control variable bounds. Notice how
the value of a variable at a particular time instant is
accessed using an Optimica-specific function call-like
syntax. finalTime is a built-in variable of the special-
ized class optimization and is used to refer to the
time at the end of the optimization interval. Finally,
the objective and the optimization interval is specified,
®. The construct introduced in Optimica to meet this
end can be viewed as built-in class attributes which
are given values through class arguments. Here the
variable representing the cost function is bound to the
built-in class attribute objective and it is specified
that finalTime is to be free in the optimization.

The Modelica and Optimica specifications are then
typically translated by a compiler into a format suit-
able for compilation with a numerical solver in order
to obtain the solution.

3 The JModelica.org platform

In order to demonstrate the feasibility and effective-
ness of the proposed Optimica extension, a prototype
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Figure 1: Overview of the JModelica.org platform ar-
chitecture.

compiler was developed, [1]. Currently, the initial pro-
totype compiler is being developed with the objective
of creating a Modelica-based open source platform fo-
cused on dynamic optimization.

The architecture of the JModelica.org platform is il-
lustrated in Figure 1. The platform consists essentially
of two main parts: the compiler and the JModelica.org
Model Interface (JMI) runtime library. The compiler
transforms Modelica and Optimica source code into a
flat model description and then generates C and XML
code. The generated C code contains the actual model
equations in a format suitable for efficient evaluation,
whereas the XML code contains model meta data,
such as variable names and parameter values. The JMI
runtime library provides a C interface which in turn
can be interfaced with numerical algorithms. There is
also an Eclipse plug-in and a Python integration mod-
ule under development. In this section, the key parts
of the JModelica.org platform will be described.

3.1 Compiler Development—JastAdd

Compiler construction has traditionally been associ-
ated with intricate programming techniques within the
area of computer science. Recent research effort has,
however, resulted in new compiler construction frame-
works that are easier to use and where it is feasible
to develop compilers with a comparatively reasonable
effort. One such framework is JastAdd [28, 17]. Jas-
tAdd is a Java-based compiler construction framework
based on concepts such as object-orientation, aspect-
orientation and reference attributed grammars [15]. At
the core of JastAdd is an abstract syntax specification,
which defines the structure of a computer program.
Based on an abstract syntax tree (AST), the compiler
performs tasks such as name analysis, i.e, finding dec-

model M

Real x;
equation
x = 1;
end M;

myDecl

Figure 2: A simple Modelica model (left) and its cor-
responding abstract syntax tree (right). The dashed ar-
row represents the reference attribute myDecl which
binds an identifier to its declaration.

larations corresponding to identifiers, type analysis,
i.e., verifying the type correctness of a program, and
code generation.

The JastAdd way of building compilers involves
specification of attributes and equations based on the
abstract syntax specification. This feature is very simi-
lar to ordinary Knuth-style attribute grammars [32] but
enhanced with reference attributes. Accordingly, at-
tributes may be used to specify, declaratively, links be-
tween different nodes in the AST. For example, iden-
tifier nodes can be bound to their declaration nodes.
In Figure 2, an example of a small Modelica program
and its corresponding AST is shown. Notice how the
reference attribute myDec]l links an identifier (IdUse)
to its declaration (CompDecl).

JastAdd attributes and equations are organized into
separate aspects, which form a convenient abstrac-
tion for encoding of cross cutting behavior. Typically,
implementation of a semantic function, for example
type analysis, involves adding code to large number
of classes in the AST specification. Using aspects,
much like in Aspect] [31], cross cutting behavior can
be modularized in a natural way. In addition, this ap-
proach is the basis for one of the distinguishing fea-
tures of JastAdd: it enables development of modularly
extensible compilers. This means that it is feasible to
develop, with a comparatively moderate effort, modu-
lar extensions of an existing JastAdd compiler without
changing the core compiler. This feature has been used
in the implementation of the JModelica.org Modelica
and Optimica compilers, where the Optimica compiler
is a fully modular extension of the core Modelica com-
piler.

The JastAdd compiler transforms the JastAdd spec-
ification into pure Java code, where the definition of
the abstract grammar translates into Java classes corre-
sponding to Modelica classes, components, functions,
and equations. The JastAdd attributes are woven into



the Java classes as methods. In addition, methods for
traversing an AST and query properties of a particular
AST class, e.g., obtain a list of variables contained in a
class declaration, are automatically generated. As are-
sult of this approach, compilers produced by JastAdd
are in the form of standard Java packages, which in
turn can be integrated in other applications. It is there-
fore not necessary to know the particular details of
how to write JastAdd specifications in order to use the
JModelica.org compilers, knowledge of Java is gener-
ally sufficient.

3.2 The Modelica and Optimica Compilers

At the core of the JModelica.org platform is a Mod-
elica compiler that is capable of transforming Mod-
elica code into a flat representation and of generat-
ing C code. In the Modelica compiler, several design
strategies, for example name look-up, developed for
a Java compiler developed using JastAdd [16], were
reused. For additional details on the implementation
of the compiler, see [3].

In order to support also the Optimica extension, a
modular extension of the core Modelica compiler has
been developed. The extended compiler is capable of
translating standard Modelica enhanced with the new
Optimica syntax presented in Section 2.2. The Optim-
ica extension is reported in more detail in [27].

The JModelica.org Modelica compiler currently
supports a subset of Modelica version 3.0. The Mod-
elica Standard Library version 3.0.1 can be parsed
and the corresponding source AST can be constructed.
Flattening support is more limited, but is being contin-
uously improved.

3.3 Code Generation

The JModelica.org offers a code generation frame-
work implemented in Java as part of the compil-
ers. The framework facilitates development of custom
code generation modules and is based on templates
and rags. A template is used to specify the structure
of the generated code and tags are used to define ele-
ments of the template which is to be replaced by gen-
erated code. In order to develop a custom code gener-
ation module, the user needs to define a template and
a set of tags, and then implement the actual code gen-
eration behavior corresponding to each tag. In order to
perform the latter, the AST for the flattened Modelica
model is typically used, where objects corresponding
to declarations, equations and functions are queried for
information used to generate the target code.

The JModelica.org platform contains two code gen-
eration modules, one for C and one for XML. The
generated C code contains the model equations and is
intended to be compiled and linked with the JModel-
ica.org Model Interface (see below) in order to offer
efficient evaluation of the model equations. The XML
output consists of model meta data such as specifica-
tions of variables, including their names, attributes and
type. Also, the XML output includes a separate file for
parameter values. The XML output is similar to what
is discussed within the FMI initiative [12], and the
intention is for the JModelica.org XML output to be
compliant with FMI once finalized. In addition, there
is on-going work aimed to develop an XML specifica-
tion for flattened Modelica models, including variable
declarations, functions, and equations [9]. The objec-
tive is for JModelica.org to be compliant also with this
specification.

34 CAPI

The JModelica.org platform offers a C API, entitled
the JModelica.org Model Interface (J MI), suitable for
integration with numerical algorithms. The interface
provides functions for accessing and setting parame-
ter and state values, for evaluation of the DAE residual
function and for evaluation of cost functions and con-
straints specified in an Optimica model. In addition,
Jacobians and sparsity patterns can be obtained for all
functions in the interface. To meet this end, a package
for automatic differentiation, CppAD [6], has been in-
tegrated into JMI. The JMI code is intended to be com-
piled with the C code that is generated by the compiler
into an executable, or into a shared object file.

The JMI interface consists of four parts: the ODE
interface, the DAE interface, the DAE initialization
interface, and the Optimization interface. These in-
terfaces provide access to functions relevant for differ-
ent parts of the optimization specification. The ODE
and DAE interfaces provide evaluation functions for
the right hand side of the ODE and the DAE residual
function respectively. The DAE initialization problem
provides functions for solving the DAE initialization
problem, whereas the Optimization interface provides
functions for evaluation of the cost functions and the
constraints.

Notice that this acronym is unrelated to Java Metadata inter-
face



3.5 Interactive Environment—Python

Solution of engineering problems typically involves
atomization of tasks in the form of user scripts.
Common examples are batch simulations, parameter
sweeps, post processing of simulation results and plot-
ting. Given that JModelica.org is directed towards sci-
entific computing, Python, see [23], is an attractive op-
tion. Python is a free open-source highly efficient and
mature scripting language with strong support in the
scientific community. Packages such as NumPy [38]
and SciPy [20], and bindings to state-of-the art numer-
ical codes implemented in C and Fortran make Python
a convenient glue between JModelica.org and numeri-
cal algorithms. In addition, IPython [19] with the visu-
alization package matplotlib [29] and the PyLab mode
offer an interactive numerical environment similar to
the ones offered by Matlab and Scilab.

The JModelica.org Pyhon package includes sub
packages for running the compilers, for managing
file input/output of simulation/optimization results and
for accessing the function provided by the JMI inter-
face. The compilers are run in a Java Virtual Machine
(JVM) which is connected to the Python environment
by the package JPype, [35]. One of JPype’s main fea-
tures is to enable direct access to Java objects from a
Python shell or script. This feature is used to com-
municate with the compilers, but can also be used to
retrieve the ASTs generated by the compilers. The lat-
ter feature enables the user to traverse and query the
ASTs interactively, see 4.2 for a discussion on exam-
ple usages of this feature.

The integration of the JMI is based on the ctypes
package [22]. Using ctypes, a dynamically linked li-
brary (DLL) can be loaded into Python, All the con-
tained functions of the DLL are then exposed and can
be called directly from the Python shell. In order to en-
able use of Numpy arrays and matrices as arguments
to the JMI functions, the argument types has been ex-
plicitly encoded using standard features of ctypes. In
order to provide a more convenient interface to the
JMI functions, a Python class, Model has been created.
This class encapsulates loading of a DLL and typing
of the JMI functions, and also provides wrapper func-
tions supporting Python exceptions. In addition, upon
creation of a Model class, the generated XML meta
data files are loaded and parameter values and start at-
tributes are set in the loaded model instance. Model
objects can then be manipulated, e.g., by setting new
parameter values, or passed as an argument to a simu-
lation or optimization algorithm.

3.6 Optimization Algorithms

The JModelica.org platform offers two different al-
gorithms for solving dynamic optimization problems.
The first is a simultaneous optimization method based
on orthogonal collocation on finite elements [7]. Us-
ing this method, state and input profiles are parame-
terized by Lagrange polynomials which are based on
Radau points. This method corresponds to a fully im-
plicit Runge-Kutta method, and accordingly it pos-
sesses well known and strong stability properties. By
parameterizing the variable profiles by polynomials,
the dynamic optimization problem is translated into
a non-linear programming (NLP) problem which may
be solved by a numerical NLP solver. This NLP is,
however, very large. In order to efficiently find a solu-
tion to the NLP, derivative information as well as the
sparsity patterns of the constraint Jacobians need to be
provided to the solver. The simultaneous optimization
algorithm has been interfaced with the large-scale NLP
solver Ipopt [48], which has been developed particu-
larly to solved NLP problems arising in simultaneous
dynamic optimization methods. The algorithm is im-
plemented in C as an extension of JMI, and provides
an example of how to implement algorithms based on
the JMI functions. In particular, Jacobians computed
by CppAD is used, including sparsity patterns.

In addition to the simultaneous optimization algo-
rithm, JModelica.org contains a multiple shooting al-
gorithm, [8]. The algorithm is based on an integra-
tor which is used to simulate the system dynamics and
thereby evaluate the cost function, and an optimiza-
tion algorithm which modifies the optimization vari-
ables. Typically, the optimization variables are Mod-
elica parameters in the case of a design or parame-
ter optimization problem, or parameters resulting from
discretization of a control input. The multiple shoot-
ing algorithm is implemented in Python, and relies on
the integrator SUNDIALS [34], its Python interface
PySUNDIALS [47], and the optimization algorithm
scipy_slsqp, which is included in Scipy. In order to im-
prove the convergence of the optimization algorithm
sensitivities are computed and propagated to the op-
timization algorithm. The sensitivities are computed
using SUNDIALS. The implementation serves also as
an example of how to develop algorithms based on the
JModelica.org Python interface. The multiple shoot-
ing algorithm is described in more detail in [43].

The above algorithms are both based on the avail-
ability of derivatives. For some optimization prob-
lems, it is not possible to reliably compute derivatives,
and accordingly, numerical optimization algorithms



requiring derivative information may fail. This situ-
ation may occur for certain classes of hybrid systems.
In such cases, heuristic methods which do not require
derivative methods may be better suited. Examples of
such methods are genetic algorithms, pattern match-
ing, simulated annealing, and simplex (Nelder-Mead).
Some methods of this class are freely available for
Python, see the OpenOpt project [13] for more infor-
mation, and may be integrated with the JMI Python
interface.

4 Applications

4.1 Dynamic optimization

Prototype versions of the JModelica.org software has
been used successfully in applications in different do-
mains. In [26], an application is reported where op-
timal start-up trajectories are computed for a plate re-
actor. The problem is challenging not only due to the
complexity of the model (approx. 130 differential and
algebraic equations), but also due to non-linear and
in some conditions unstable dynamics. A main chal-
lenge in this project was to obtain trajectories robust
to parameter variations. The procedure of finding ac-
ceptable solutions was highly iterative in that the cost
function and the constraints required several redesigns.
The high-level specification framework in combina-
tion with automatic code generation offered by Optim-
ica and the JModelica.org platform proved very useful
in this respect.

The prototype software has as also been used in a
number of other projects involving vehicle systems.
For example, in [10] optimal tracks for racing cars
were optimized, and in [45], optimal rail profiles were
computed for a novel mass transportation system, the
NoWiait train concept. Other examples where Optim-
ica has been used are reported in [25] where minimum
time optimization for an industrial robot is considered
and in [24] where an optimal control application of a
pendulum system is reported.

4.2 Using ASTs

As described above, the JModelica.org compilers pro-
vide direct access to abstract syntax trees (ASTs). The
ASTs are abstract representations of Modelica mod-
els, and provides a means to access the contents of a
Model in a structured and programmatic way. Three
different types of ASTs are used during the procedure
of producing a flat Modelica representation: the source
AST, the instance AST, and the flat AST. The ASTs

in the JModelica.org org compilers consists of stan-
dard Java objects instantiated from the AST classes
produced by the JastAdd compilers. Also, means to
traverse the AST are provided automatically, in addi-
tion to the methods corresponding to attributes defined
in the compiler.

The source AST results from parsing of a Model-
ica source file. Its structure corresponds precisely to
the actual structure of the code, but the details of the
concrete syntax has been removed. Given the source
AST, a number of queries can be performed. For ex-
ample, the AST may be traversed and for each class
declaration, the documentation annotation and the sig-
natures of the public parameters may be extracted and
pretty printed according to a HTML template. Another
example would be to traverse the AST and output the
default values of all parameters in XML format.

Based on a particular class declaration in the source
AST, an instance AST may be constructed. The in-
stance AST differs from the source AST in that in the
instance AST the components structurally contained
in a component declaration is explicitly represented.
Also, in the instance tree, modifications, e.g., class
and component redeclarations take effect. In fact, the
key to constructing the instance tree is to handle mod-
ification environments consisting of an ordered set of
modifications applicable to a particular class or com-
ponent instance. Construction of the instance AST is
described in [3]. Access to the instance AST enables
several analyses to be performed. For example, the in-
stance AST may be traversed, and for each primitive
variable encountered the corresponding modification
environment may be retrieved and output to file.

The flat AST, corresponding to a flattened Modelica
model, is constructed by traversing the instance AST
and collecting all primitive variables, equations, algo-
rithms and functions. The flat AST offers a predefined
API for retrieving variables of the primitive types. For
example, Java methods are provided for retrieving all
parameters of Real type, for retrieving all differenti-
ated variables, for querying if a variable occurs lin-
early in the model equations etc. The flat AST is typi-
cally used as a basis for code generation.

S An Example

We consider the Continuously Stirred Tank Reactor
(CSTR) process depicted in Figure 3. The tempera-
ture and the reactant concentration of the inlet flow are
constant and the control input of the process, u corre-
sponds to the coolant flow. The coolant temperature,
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Figure 4: Optimization result for the CSTR example.

T, is constant. A dynamic model for an exothermic
reaction is then given by

¢=B(1—c)—ke ™M

4
T=B(Ty—T)+ke™Tc—a(T —T.)u @

where c is the normalized concentration in the reactor,
T is the normalized reactor temperature, and f3, k, N,
and o are physical parameters for the process.

Based on the CSTR model, the following dynamic
optimization problem can be formulated:

°t
Iun(gl/of qi(cr— )+ q2(T, — T)* + r(u, — u)*dt (5)
subject to the dynamics (4). The cost function penal-
izes deviations from a desired operating point given by
target values ¢,, 7, and u, for ¢, T and u respectively.
Starting at fixed initial conditions, the optimal solu-
tion transfers the system from one operating point to
another.

In this case, the numerical solver IPOPT [48] is used
to solve the transcribed NLP resulting from direct col-
location. The result of the optimization is shown in
Figure 4.

Figure 5: Simulation result of the MPC.

The optimal control problem formulated above can
also be used in conjunction with other algorithms
available in Scipy. To demonstrate this, a simple
model predictive controller (MPC) has been imple-
mented. The MPC control strategy is based on the
receding horizon principle, where an open loop opti-
mal control problem is solved in each sample. Simu-
lation of an MPC requires joint simulation of the plant
and solution of the optimal control problem. Such op-
erations are easily encoded in Python. The result of
executing the MPC is shown in Figure 5.

6 Summary and future work

In this paper, the JModelica.org open source platform
has been presented. The platform features compilers
written in JastAdd/Java, Optimica support, a C model
API, and XML export. The compilers and the C API
for evaluation of the model equations have been inter-
faced with Python, in order to provide an environment
for scripting and development of custom applications.
In addition, the abstract syntax trees representing the
Modelica source code, the instance hierarchy and the
flattened model are accessible.

Future plans include improvement of the Modelica
compliance of the compiler front-end, integration of
additional numerical optimization algorithms, simu-
lation support, and support for heuristic optimization
methods such as simulated annealing and genetic algo-
rithms. Also, an Eclipse plug-in is under development
where current research on custom IDE development
based on JastAdd is explored.
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