
An XML Representation of DAE Systems
Obtained from Modelica Models

Francesco Casellaa Filippo Donidaa Johan Åkessonb,c

aDipartimento di Elettronica e Informazione, Politecnico di Milano
Via Ponzio 35/5, 20133 Milano, Italy

bDepartment of Automatic Control, Lund University, Lund, Sweden
cModelon AB, Sweden

Abstract

This contribution outlines an XML format for repre-
sentation of flat Modelica models. The purpose is to
offer a standardized model exchange format which is
based on the DAE formalism and which is neutral with
respect to model usage. Many usages of models go
beyond what can be obtained from an execution inter-
face offering evaluation of the model equations. Sev-
eral such usages arise in the area of control engineer-
ing, where Linear Fractional Transformations (LFTs),
derivation of robotic controllers, optimization, and real
time code generation are some examples. The choice
of XML is motivated by its defacto standard status
and the availability of free and efficient tools. Also,
the XSLT language enables specification of transfor-
mation of the XML model representation into other
formats.

Keywords: DAE representation; XML standard;
modeling

1 Introduction

The Modelica language allows to build complex mod-
els of physical systems, described by differential-
algebraic equations (DAE). These models can be used
for different purposes: simulation, analysis, optimiza-
tion, model transformation, control system synthesis,
real-time applications and so forth. Each one of these
activities involves a specific handling of the corre-
sponding differential algebraic equations, by both nu-
merical and symbolic algorithms. Moreover, special-
ized software tools which implement these algorithm
may already exist, and only require the equations of
the model to be input in a suitable way.

The goal of this paper is to define an XML-
based representation of the DAEs of Modelica mod-
els, which can then be easily transformed into the in-

put of such tools, e.g. by means of XSLT transfor-
mations. On one hand, this representation must be as
close as possible to the mathematical equations, there-
fore without any aggregation, inheritance, and com-
plex data structures left. On the other hand, it must
be as general as possible with respect to the possible
usage of the equations, which should not be limited to
simulation.

This representation could then be used as a standard
interface between the front-end of any Modelica com-
piler, and any possible back-end for simulation, opti-
mization, analysis, etc.

In addition, the XML representation could also be
very useful for treating other information concerning
the model, for example using an XML schema (DTD
or XSD) for representing the simulation results, or
the parameter settings. In those cases, using a well-
accepted standard will result in great benefits in terms
of interoperability for a very wide spectrum of appli-
cations.

The paper is structured as follows: in Section 2, the
abstract structure of the DAE representation is infor-
mally described, motivating the structure of the formal
XML schema definition. Section 3 discusses some of
the possible usages of such a representation. Section
4 briefly describes test implementations in the Open-
Modelica and JModelica.org compilers, while Section
5 ends the paper with concluding remarks and future
perspectives.

2 Abstract representation of the DAE
system

To the best of the authors’ knowledge, the optimum
representation for defining a DAE system should be as
close as possible to the mathematical definition. Pro-
vided that a DAE system consists of a system of dif-



ferential algebraic equations, it can be expressed as:

f (ẋ,x,y,u,v, t, p) = 0 (1)

where ẋ is the derivative of state, x is the states, y are
the outputs, u are the inputs, v are the algebraic vari-
ables, t is the time and p is the set of the parameters.

For the rest of this paper, we assume that the DAEs
(1) describing the model have index 1. This restric-
tion is necessary to give to the x variables the meaning
of states, i.e., variables whose initial values can be ar-
bitrarily selected. Most applications for DAE models
(and all the applications discussed in this paper) re-
quire an index-1 DAE as input, so it is reasonable to
discuss a representation limited to this class of equa-
tions. In case the equations of the original Modelica
model have higher index, such DAEs can be obtained
by symbolic index reduction, which is an available fea-
ture in most Modelica tools, so this is not a drastic lim-
itation to the range of applicable models. In this case,
however, we must assume that the index reduction pro-
cedure gives a fixed selection of states.

Even though the representation provided in equation
1 is very general, and is very appreciable for viewing
the problem as one could see it written on paper, it
cannot be directly used for inter-tools exchange in an
efficient way.

The main idea is then to provide a standardized
mathematical representation of the DAE system that
relies on standard technology and is application-
oriented. This justifies the adoption of the XML stan-
dard as the base framework. It can be noted that while
XML is generally not suited for manual inspection, an
XSLT transformation translating an XML description
into, e.g., a flat Modelica representation is easily de-
fined.

As an additional requirement, we must consider that
the DAE systems we are dealing with are derived from
the Modelica models. Even if this can be seen as a
restriction, this is not, since the Modelica language
specification interprets a superset of the problems that
are object of this paper, providing a textual definition
to describe the physical systems, concerning also the
variables types and the expressions operators defini-
tions.

Previous efforts have been registered to define stan-
dard XML-based representations of Modelica mod-
els, including [14, 15]. A standard representation of
process engineering models is described in [2] and a
standard for Modelica-derived simulation models is
presented in [11]. In addition, a standard represen-
tation for API implementation for Modelica is given

in [16], and standard representation for simulation li-
braries [9]. A recent initiative is the Functional Model
Interface (FMI)1, [6], which is aimed at creating a
standard for a Modelica execution API.

The aim of this work is to take advantage from all
this studies and try to define a simple and general rep-
resentation which is not tailored for a particular us-
age, but rather aims at covering the largest possible
problems that can be formulated starting from a Mod-
elica model. Particular care has been exercised in or-
der to define concepts and structures which are general
enough to be usable in different contexts.

In the remainder of this section, the different parts
of the proposed XML representation will be described.

2.1 Variables

The Variables entity corresponds to the set of
scalar variables (real, integer, boolean) that are present
in the equations of the DAE. In particular, taking into
account the continuous-time representation (1), five
types of variables are needed:

∙ Time-invariant, i.e., the constants and the param-
eters.

∙ Input variables, conceptually given from the out-
side.

∙ Algebraic variables corresponding to algebraic
equations in the matching algorithm. This cat-
egory also includes dummy derivatives obtained
after index reduction. This set of variables could
also be identified as the set of the time-variant
variables not contained in the set of states or in-
puts.

∙ State variables.

∙ Derivatives of state variables.

As one could easily imagine, some constraints are
present on the variables set. Firstly, a one-to-one re-
lationship is defined between the set of the state vari-
ables and the set of derivatives. Secondly, the outputs
are a subset of the state and algebraic variables, in the
sense that the state and algebraic variables might also
be marked as output variables, i.e., have an output at-
tribute.

Associated with a variable is also a set of attributes,
corresponding to the attributes specified by the Model-
ica language. These include the start attribute, min and

1The work on FMI is done within the ITEA2 project MOD-
ELISAR.



max, unit, nominal etc. These attributes are essential
to include in a model specification format since they
provide information about, for example, start values of
variables, model validity regions and unit information.

Note that string parameters could also be consid-
ered, with constant binding to constant literal strings.
The string binding equations will not be considered in
the equation sets, because are irrelevant from a mathe-
matical point of view.

2.2 Expressions

Expressions represent all the mathematical ex-
pression of the system and can be formed by aggre-
gating identifiers and literals through:

∙ Unary operators. This class contains all the math-
ematical functions that require only one argument
as input. Possible examples are the trigonomet-
ric functions (sin, cos, tan, asin, acos,
atan), the hyperbolic functions (sinh, cosh,
tanh), the exponential functions (exp), the log-
arithmic functions (log, log10), and the square
root function (sqrt).

∙ Binary operators. This set contains all the alge-
braic operators like +, *, -, /, the factor function
ˆ, and the atan2 function.

∙ Function calls referring to user-defined functions.

XML encoding of expressions is straightforward
by introducing elements corresponding to an abstract
grammar specification used in a compiler. This ap-
proach renders the DAE XML representation format to
provide abstract syntax trees (ASTs) for expressions,
which simplifies the development of XSLT transfor-
mations. Also, translating this representation into
other formats for representing mathematical expres-
sions, e.g., MathML, [5], would be trivial.

2.3 Functions

A Function is conceptually equivalent to an algo-
rithm, i.e. a part of a procedural code and, in this sense
has:

∙ Input variables (possibly with default values)

∙ Output variables

∙ Protected variables (i.e. variables visible only
within the function)

∙ An algorithm to compute outputs from inputs,
possibly using protected variables.

The DAE representation contains only scalar vari-
ables. If any vector or array variable is present
within the original object oriented model, it is flat-
tened to their fundamental scalar elements by the com-
piler before producing the XML. This is also the case
for the other data structures (e.g. records) and for
the functions. In particular, functions returning vec-
tors or records are split into separate scalar func-
tions, each one corresponding to the computation of
a single scalar element of the outputs. For example,
(x,y)=f(u,v) is converted to the scalar equations:

1 x1 = f1(u1,u2,v1,v2)

2 x2 = f2(u1,u2,v1,v2)

3 y1 = f3(u1,u2,v1,v2)

4 y2 = f4(u1,u2,v1,v2)

where each function fj() is defined in Modelica as
the original function f(), save that all outputs except
the j-th are declared as protected variables instead of
outputs. The fj() functions should retain a refer-
ence to the original function f(), allowing an effi-
cient computation scheme, where required. As an ex-
ample, a simulation applications might cache the re-
sults of calling f(u,v) when encountering the first
call to any fj(u,v), and then use this to get the re-
sults of the other scalar functions calls with the same
arguments, without re-executing the algorithm.

If the compiler performs function in-lining before
generating the XML representation, the corresponding
function calls disappear from the model; on the other
hand, sophisticated in-lining of non-trivial functions
could be performed by a post-processing tool, whose
input is the XML code. The subject of in-lining is thus
completely transparent and orthogonal to the DAE rep-
resentation discussed here.

The algorithm in a function is formulated by an im-
perative language equivalent to Modelica algorithms,
expressed as an XML translation of the corresponding
abstract syntax tree.

The abstract syntax tree representation for func-
tions is conceptually a superset of the Expression
entity defined in subsection 2.2. More pre-
cisely, it is necessary to add three main classes
of entities. Firstly, the program flow constructs
(such as the if-then-else, the for-loop, the
while-loop and others) are necessary. Secondly,
there are some Modelica-specific constructs, e.g.,



sample() and initial(). Finally, the basic op-
erators provided by a majority of programming lan-
guages, i.e., the boolean relation operators including
<, <=, ==, <>, > and >=, and finally type conversion
primitives such as floor and edge.

Again, XML elements are conveniently introduced
to represent functions and related quantities. The ad-
vantages of having such kind of abstract representa-
tion are evident, for example, it can be easily converted
to any imperative programming language (C, Matlab,
Mathematica, Maxima, Maple, Scilab, Python, Java,
etc) by means of XSLT transformations.

2.4 Equations

In many cases, a Modelica model includes parameters
depending on other parameters. For simulation, it is
necessary to solve the corresponding equations numer-
ically at initialization. The numerical values can then
be used for dynamic simulation. For other purposes,
it may be necessary to keep some of these relation-
ships in the model. For instance, in optimization prob-
lems there may be a free parameter p1 and another
parameter p2 = f(p1). In this case, the parameter
p2 cannot be computed before the optimization pro-
cedure starts, but rather, the relationship needs to be
included amongst the constraints in the optimization.
When building LFT representations, p1 might be an
uncertain parameter, while f() might be well known;
in this case, one wants to keep the dependency of p2
from p1 in the dynamic model.

When dealing with simulation problems, equations
for parameters are conceptually part of the initializa-
tion section. However, they may play a special role in
non-simulation problems, in particular when they all
have fixed = true. In the case of LFT transformations
there are no initial equations, but it is still necessary to
consider the relationships between uncertain parame-
ters and all other parameters when formulating the un-
certain dynamic equations.

In fact, there is a whole class of problems for which
the initial equations are irrelevant. As a first example,
consider the LFT representation of an uncertain dy-
namical system. This system only involve the dynamic
equations, and the initial values of the states are not
required for the transformation. Also, when dealing
with the derivation of inverse kinematics, computed
torque and inverse dynamics in robot models, the re-
sulting problems are purely algebraic: there are no ini-
tial equations involved once the appropriate BLT has
been performed and the irrelevant parts of the model
have been discarded.

However, there are still many problems where the
values of initial states are an essential part of the prob-
lem. The initial variable values are generally not
known, but need to be solved from the initial equa-
tions. There are also problems where additional initial
equations are required to determine the values of some
parameters (set with fixed=false). An additional exam-
ple is given by the so-called trimming problems, where
the values of the inputs are determined by prescribing
certain steady values for the outputs.

Therefore, three separate sets of equations need be
defined:

1. Dynamic equations. This set is composed of
equations specified in equation sections and bind-
ing equations for variables. These equations are
matched to algebraic variables (algebraic equa-
tions) and to state derivatives (differential equa-
tions). Each equation is given in residual form
<expression> = 0.

2. Binding equations for parameters with
fixed=true. These equations are matched to
fixed=true parameters. The equations are in the
form <parameter> = <expression>, and can be
solved through assignments. The latter statement
follows since it is illegal to define models with
cyclic dependencies between parameters in
Modelica.

3. Initial equations. This set is composed of equa-
tion given in initial equation sections and binding
expressions for variables with fixed=true. These
equations are matched to state variables, param-
eters with fixed=false, and possibly to inputs, if
there are any (see example below). The initial
equations should be in the form expression = 0.

model M
input Real u;
output Real y;
Real x;

equation
der(x) = -x + u;
y = 4*x;

initial equation
der(x) = 0; // Implies x(0) = u(0)
y = 4; // This equation determines

// x(0) = 1, and therefore
// u(0) = 1;

end M;

Depending on the application, these three sets can
be used in different ways, as will be discussed in Sec-
tion 3.



2.5 Additional information

As introduced above, the range of applications that
could directly use as input an XML DAE represen-
tation or any ad hoc description (derived from the
more general one through XSLT transformation) is ex-
tremely variegated [3]. The common aspect is that
the majority of tools for these usages require an in-
dex 1 DAE, as described in this section. Other in-
formation could be available from the Modelica tool,
which could be relevant for some applications. For
instance, information about the BLT structure of the
dynamic simulation problem (compute the derivatives
and algebraic variables, given the inputs, states, pa-
rameters, and time) could also be included, as well as
information about the index reduction process in case
the DAEs are the result of some index reduction algo-
rithm such as [12]. This is however beyond the scope
of the present paper.

3 Application examples

3.1 Simulation

The simulation tools are generally following the same
approach. Firstly, the parameters and constants within
each equation are numerically evaluated, by solving
all the three equation sections together to determine
the initial values of everything. After that, the numer-
ical values of parameters are fixed, and the dynamic
equations are used to compute derivatives and alge-
braic variables at each time step in an integration algo-
rithm. This is also the case when considering the par-
allel simulation problem. Functions are the “linked”
as external functions if any function calls is present
for the state derivative computation.

3.2 LFT Transformation

LFT is a widely used model description formalism
in modern control and system identification theory,
in which uncertain parameters and non-linearities are
“pulled out” from the system, resulting in the feedback
connection between a linear, time-invariant model
and blocks representing the uncertain and/or nonlin-
ear parts. The procedure for obtaining an LFT repre-
sentation from Modelica models is fully described in
[4] and is only briefly summarized here. Assuming an
ODE system, the values of the parameters are given
by the binding equations, which specify the value of
each parameter either by a numerical value, or as a
function of other parameters. At each time instant,

the values of states and inputs are known; the numeri-
cal values of the parameters are not known explicitly,
but they can be considered as known, given the bind-
ing equations. The goal is now to compute the state
derivatives ẋ and the algebraic variables v. To this
end, the equations and the variables of the problem can
be re-ordered so that the incidence matrix (equations
on the rows, unknowns on the columns) is brought in
Block-Lower-Triangular (BLT) form. This task is ac-
complished by using the well-known Tarjan algorithm
[7], applied to the equations-variables bipartite graph,
which is equivalent to the incidence matrix of the sys-
tem. The strongly connected components of the graph
correspond to the blocks on the diagonal, and a par-
tial ordering among equations can be deduced from
the graph after the algorithm has terminated. After re-
ordering, the system can be formulated as

Φ(x,u,Ξ, p0) = 0, (2)

where Φ(⋅) is the set of re-ordered equation residuals
and Ξ is the re-ordered set of the system unknowns
(i.e., all the elements of vectors ẋ and v). By defining
Φ j(⋅) as the j-th sub-set of equations corresponding to
one block of the BLT form, Ξ j as the corresponding
sub-set of unknown variables, and q as the number of
blocks on the diagonal of the BLT incidence matrix,
the re-ordered system equations (2) can be formulated
as

Φ1(x,u,Ξ1, p0) = 0 (3)

Φ2(x,u,Ξ1,Ξ2, p0) = 0 (4)

... (5)

Φq(x,u,Ξ1, ...,Ξq−1,Ξq, p0) = 0. (6)

The system expressed in the form (3)-(6) can be exe-
cuted within a suitable environment, which supports
the symbolic manipulation of LFTs. Summing up,
in the case of LFTs, the binding equations for pa-
rameters are solved by keeping the uncertain parame-
ters as symbolic objects, and the resulting expressions
are symbolically substituted in the dynamic equations;
then, the relationship between the states and the inputs
on one hand and the derivatives and the outputs on the
other hand, is transformed into an LFT.

3.3 Derivation of robotic controllers

The design of controllers for robotic systems with N
degrees of freedom usually starts with the equations of



motion obtained from the Euler-Lagrange equations:

B(q)q̈+H(q, q̇)q̇+E(q) = τ (7)

yp = K(q) (8)

yv =
∂K
∂q

q̇, (9)

where q is the N-element vector of Lagrangian coordi-
nates, which usually correspond to the rotation angles
of the actuator motors, q̇ is the vector of the corre-
sponding generalized velocities, yp is the vector of the
Cartesian positions of selected points of the robot, τ

is the vector of generalized applied forces correspond-
ing to each degree of freedom (the torques applied by
the actuators), B(q) is the inertia matrix, H(q, q̇) is the
matrix corresponding to the centripetal, Coriolis, and
viscous friction forces, E(q) accounts for the effects
of the gravitational field.

The classical approach to write (7) requires to com-
pute the so-called direct kinematics, i.e. how the val-
ues of q and q̇ translate into the position and motion of
the robot’s links, then to compute the Lagrange func-
tion, i.e. the difference between kinetic and potential
energy, and apply the Euler-Lagrange equations. This
can be done manually, or using one of the specialized
tools available for this task.

With an object-oriented approach the original model
is usually an index-3 DAE. This model is then brought
into index-1 form

F(x, ẋ,y,u) = 0 (10)

where

x =
[

xp

xv

]
=

[
q
q̇

]
, y =

[
yp

yv

]
, u = τ, (11)

by means of connection tree analysis, change of state
variables, and index reduction algorithms; this model
is mathematically equivalent to the Lagrange model
(7)-(9). Currently available Modelica tools solve the
simulation problem by producing an efficient proce-
dure to solve it for ẋ and y given x and u. This pro-
cedure effectively brings the system into state-space
form, which can then be linked to any ODE/DAE
solver. In fact, there are other things that can be done
with the model (10), which are very useful for the de-
sign of control system.

Robot trajectories are originally defined in Carte-
sian space as functions of time y0

p(t). Obtaining the
corresponding reference trajectories in Lagrangian co-
ordinates for the low-level robot joint controllers re-
quires solving the problem to obtain the the so-called

inverse kinematics:

q0(t) = K−1(yp) (12)

q̇0(t) =
(

∂K
∂q

)−1

yv; (13)

the Jacobian of K(q) is also needed to numerically in-
vert (8). Furthermore, two interesting approaches to
model-based robot control are based on the direct use
of (7): the pre-computed torque approach and the in-
verse dynamics approach.

The pre-computed torque approach is a feed-
forward compensation scheme, which requires to
solve (7) backwards, i.e. compute the (theoretical)
torque required to follow the reference trajectory:

τ = B(q0)q̈0 +H(q0, q̇0)q̇0 +E(q0), (14)

and then feed it directly to the actuators; some decen-
tralized feedback action is also included to deal with
uncertainties and disturbance.

The inverse dynamics approach is a feedback com-
pensation scheme, that uses the model in order to
transform the non-linear control problem into a linear
problem with constant coefficients. Using this method,
a virtual input variable v is defined which satisfies

τ = B(q0)v+H(q, q̇)q̇+E(q). (15)

Since the inertia matrix B is assumed to be structurally
non-singular, it is always possible to solve (15) for
v(t), given the generalized velocities q(t) and q̇(t), that
are sensor outputs. Using this virtual input, the robot
dynamics (7) can then be formulated as a set of double
integrators:

q̈ = v (16)

For the robotic applications, the parameter binding
equations are solved numerically; their numerical val-
ues are then substituted into the dynamic equations.
Depending on the specific robotic problem: direct
kinematic, inverse kinematic, pre-computed torques or
inverse dynamics approach, these equations (or a part
of these) are then solved.

3.4 Optimization

The needs for solving optimization problems based on
Modelica models usually goes beyond what is typi-
cally offered by a simulation oriented execution API,
see [1]. In some cases, the initial conditions are free
variables in the optimization, which implies that the
initial equations must be explicitly available. The
same situation holds for dependent parameters since



such a parameter may be dependent on another pa-
rameter which is free in the optimization. In addition,
quantities derived from the model equations such as
first and second order derivatives and sparsity patterns
may be required by numerical algorithms.

The availability of a standardized XML-based
model exchange format is useful in an optimization
context since it enables transformation of a model into
various formats suitable for different algorithms. Also,
having access to expression syntax trees is useful for
deriving derivatives, e.g., by means of automatic dif-
ferentiation. It is worth noticing, however, that in order
to completely specify an optimization problem, quan-
tities such as cost function and constraints must also be
taken into account. This is not part of the specification
proposed in this paper. For a discussion on representa-
tion of optimization problems derived from Modelica
models and Optimica specifications, see [10].

3.5 Real time code generation

Real time code could be directly generated by in-lining
the discretization method within the equations of the
XML file (e.g., forward or backward Euler), thus ob-
taining the core of the real time code. This could also
be directly obtained from the XML formulation of the
DAEs through the usage of an XSLT transformation
if no symbolic manipulation is required. The simu-
lation problem is then formulated by solving the dy-
namic equations for the next states and for the alge-
braic variables and then bringing it into BLT form.

If all the equations in the BLT form are linear, or
can at least be solved explicitly in symbolic form, then
it is straightforward to generate simulation code with
fixed execution time. Otherwise, if there are implicit
nonlinear equations, iterative solvers will be needed
and there might be convergence problem that require
proper handling.

4 Test implementations

There are two prototype implementations available.
The implementation of the XML module within the
OpenModelica compiler started the past year and is
now included in the latest release of the compiler. This
functionality allows dumping of a flattened Modelica
model after performing the index reduction (if neces-
sary), the BLT transformation and the matching algo-
rithm. The API method provided by the OpenMod-
elica compiler offers the possibility to specify several
inputs parameters, such as if to add or not the informa-

tion for solving the system, and if to dump the equa-
tions as residuals or add MathML representation for all
the equations. This XML schema is available at [8].

The JModelica.org platform currently supports gen-
eration of variable meta data, as described in Sec-
tion 2.1, in XML format, see [13, 10]. It is intended
that this functionality is extended to include also equa-
tions an functions as well as cost functions and con-
straints for optimization.

As for the actual specification of a DAE XML
schema, the objective is to build on what is done in
the FMI initiative concerning model meta data and to
merge this with the existing schema [8].

5 Conclusions and future perspec-
tives

In this paper, we have outlined an XML represen-
tation of DAEs. This will allow easy coupling of
Modelica compiler front-ends with diverse applica-
tion back-ends that require the system equations as
inputs. This format is not limited to Modelica mod-
els, but could be used as a lingua franca to repre-
sent continuous-time dynamical systems originally de-
scribed with other modelling languages, such as, e.g.,
gPROMS or VHDL-AMS. This would allow devel-
opers of application back-ends (e.g. for optimal con-
troller generation) to support multiple modelling plat-
form easily.

The proposed format does not support all features
of Modelica. Notably, description of hybrid constructs
are lacking. However, there is a number of interesting
applications where this is not needed, as demonstrated
by the examples outlined in this paper.

The XML description format outlined in this pa-
per might be extended in several respects. First of
all, support for discontinuous expressions (e.g. if-
expressions) could be added, possibly by including an
explicit representation of the root functions that many
tools need in order to handle discontinuities properly.
In order to support hybrid models, it would also be
necessary to introduce the concepts of discrete vari-
ables, discrete equations (those within when state-
ments), time events and state events. Another exten-
sion might be to support variables declared as vectors
and array equations, without reducing all equations to
their scalar form; this might be useful for sophisticated
symbolic processing at the vector level. Support of
index-1 models with dynamic sets of states (such as
those resulting from the dummy derivative algorithm
[12] in some cases) might be added, as well as support



for the description of higher index models. Finally,
it would be interesting to investigate how this kind of
formalism could be employed to describe sub-models
that could then be aggregated at a higher level, by in-
troducing some kind of connector concept; this might
allow some form of separate compilation strategy, at
least for a certain class of problems that do not lead to
higher index DAEs when connecting the submodels.

References

[1] Johan Åkesson. Optimica—an extension of mod-
elica supporting dynamic optimization. In In 6th
International Modelica Conference 2008. Mod-
elica Association, March 2008.

[2] Christian H. Bischof, H. Martin Bücker, Wolf-
gang Marquardt, Monika Petera, and Jutta Wyes.
Transforming equation-based models in process
engineering. In H. M. Bücker, G. Corliss, P. Hov-
land, U. Naumann, and B. Norris, editors, Au-
tomatic Differentiation: Applications, Theory,
and Implementations, Lecture Notes in Compu-
tational Science and Engineering, pages 189–
198. Springer, 2005.

[3] F. Casella, F. Donida, and M. Lovera. Beyond
simulation: Computer aided control system de-
sign using equation-based object oriented mod-
elling for the next decade. In 2nd International
Workshop on Equation-Based Object-Oriented
Languages and Tools, July, 8 2008.

[4] F. Casella, F. Donida, and M. Lovera. Automatic
generation of lfts from object-oriented non-linear
models with uncertain parameters. In 6th Vienna
International Conference on Mathematical Mod-
eling, February, 11-13 2009.

[5] D. Suliman D. Draheim, W. Neun. Searching and
classifing equations on the web, zib report 04-
22. Technical report, Konrad-Zuse-Zentrum für
Informationstechnik, Berlin, 2004.

[6] DLR, Dynasim, ITI and QTronic. The functional
model interface. Draft.

[7] I. S. Duff and J. K. Reid. An implementation of
Tarjan’s algorithm for the block triangularization
of a matrix. ACM Transactions on Mathematical
Software, 4(2):137–147, 1978.

[8] Filippo Donida. DAE XSD schema, 2009.
http://home.dei.polimi.it/

donida/Projects/AutoEdit/Images/
DAE.xsd.

[9] P. A. Fishwick. Using xml for simulation model-
ing. In Winter simulation conference, December,
8-11 2002.

[10] J. Åkesson, T. Bergdahl, M. Gäfvert, and
H. Tummescheit. The JModelica.org Open
Source Platform. In 7th International Modelica
Conference 2009. Modelica Association, 2009.

[11] J. Larsson. A framework for simultion-
independent simulation models. Simulation,
82(9):563–379, 2006.

[12] S. E. Mattsson and G. Söderlind. Index reduction
in differential-algebraic equations using dummy
derivatives. SIAM Journal on Scientific Comput-
ing, 14(3):677–692, 1993.

[13] Modelon AB. JModelica Home Page, 2009.
http://www.jmodelica.org.

[14] A. Pop and P. Fritzson. Modelicaxml: A model-
ica xml representation with applications. In 3rd
Modelica conference, November, 3-4 2003.

[15] U. Reisenbichler, H. Kapeller, A. Haumer,
C. Kral, F. Pirker, and G. Pascoli. If we only had
used xml... In 5th Modelica conference, Septem-
ber, 4-5 2006.

[16] M. Tiller. Implementation of a generic data re-
trieval api for modelica. In 4th Modelica confer-
ence, March, 7-8 2005.


