

Design and Implementation of Animation Post-processor Based on
ACIS and HOOPS in MWorks

Zhou Fanli1, Zhang Hehua2, Zhu Hengwei2, Gong Xiong1, Wang Boxing1, Liu Jun1, Chen Liping1,
Huang Zhengdong1

1Huazhong Univ. of Sci.&Tech., CAD Center, Wuhan, China
2Suzhou Toprank Software & Control Tech. Co. Ltd, Suzhou, China

{fanli.zhou, zhanghehuahust}@gmail.com, zhuhwei@126.com, {gongx, wangbx, liuj,
chenlp}@hustcad.com, zdhuang@hust.edu.cn

Abstract

A complete Modelica-based simulation platform
usually consists of modeling tool, compiler, analyzer,
solver and post-processor. The 3D animation func-
tion is essential to the post-processor of a platform
that supports MultiBody system simulation. Taking
advantage of the complementarity and interoperabili-
ty between graphical engines ACIS and HOOPS,
MWorks, as a new generation of multi-domain mod-
eling and simulation platform, implements the 3D
animation of its post-processor based on these two
graphical engines, and provides plentiful animation
functions.
This paper firstly presents the overall design of the
animation post-processor based on the analysis of
visual features of the standard multibody library in
Modelica; then describes its implementation, includ-
ing mechanisms of geometry creation and display,
data management and interactive interface; finally,
verifies the effectiveness of the post-processor by
some typical examples from the multibody library
and application to aircraft landing gear simulation.
Keywords: Modelica; Post-processor; 3D animation;
ACIS & HOOPS; MWorks

1 Introduction

A Modelica-based simulator usually consists of
modeling tool, compiler, analyzer, solver and post-
processor. The basic function of post-processor is to
display simulation results in curves. If a platform
supports multibody system, the 3D animation func-
tion is essential to its post-processor. The animation
post-processor is used to deal with multibody anima-
tion, including geometry creation, graphic rendering,
animation control and so on.

The popular graphic engines include PARASOLID,
OpenGL, ACIS[1], HOOPS[2], Granite, etc. None of
them has complete functions in animation. PARA-
SOLID is good at modeling and visual interaction
but has a defect in data management of complex
models due to its unclear data structure; OpenGL has
powerful graphical display and interaction functions
but is short of professional geometric library; ACIS
provides plentiful geometry modeling functions but
is weak in visual operation and interaction; HOOPS

has significant advantages in graphical display, inte-
raction and data structure but is not good at modeling.
Therefore, it's difficult to develop a powerful graphic
system based on only one graphical engine.
Some simulation platforms provide animation func-
tion for multibody systems based on VRML, but this
method is not powerful enough due to its defects in
graphical quality, kernel interfaces and geometry
library. Taking advantage of the complementarity
and interoperability between ACIS and HOOPS,
MWorks, as a new generation of multi-domain mod-
eling and simulation platforms, implements the 3D
animation of its post-processor based on these two
graphical engines. MWorks provides plentiful ani-
mation functions, which have the advantages of con-
venient human-computer interaction, good geometric
format compatibility, real-time geometric rendering,
high fidelity animation effects, powerful model man-
agement and high expandability.

2 Design Overview

2.1 Visual Features of Standard MultiBody Li-
brary in Modelica

The standard MultiBody library in Modelica 2.2.2 or
later consists of packages of World, Examples,
Forces, Frames, Interfaces, Joints, Parts, Sensors,
Types and Visualizers, as shown in Figure 2.1.

Figure 2.1 Modelica Standard MultiBody Library

Visualizers is the 3D graphic visualization package
of the MultiBody library, which includes models of
FixedShape, FixedShape2, FixedFrame, FixedArrow,
SignalArrow, Advanced.Arrow, Advanced.Double-
Arrow, Advanced.Shape, Internal.FixedLines and
Internal.Lines. The Advanced.Shape model is the
core of the Visualizers package, which gives the in-
formation about geometry construction in multibody
animation.

The geometry is created according to 7 output va-
riables in Visualizers.Advanced.Shape model, which
are Form, rxvisobj[3], ryvisobj[3], rvisobj[3], size[3],
Material and Extra. The variable Form represents the
shape of multibody part, which may have two types:
one is from the eight basic geometric elements in the
standard library: box, sphere, cylinder, cone, pipe,
beam, gearwheel and spring (see Figure 2.2); the
other is from imported geometries defined by exter-
nal geometric files, which have no unified format.
The variables of rxvisobj[3], ryvisobj[3] and rvi-
sobj[3] specify the position of model relative to the
world coordinate system. The variable size[3] de-
scribes the length, width and height of model as
shown in Figure 2.2, in which the dark blue arrow
means the length direction and the light blue arrow
means the width direction. The variable Material
depicts material properties of model including color
and specular coefficient. The variable Extra implies
additional graphic properties, which have different
meanings for different elements, as shown in Table
2.1.

Figure 2.2 Eight Basic Geometric Elements

Table 2.1 Meaning of Variable Extra
Shape Type Meaning of Variable Extra

cylinder
If Extra > 0, a black line is in-
cluded in the cylinder to show
its rotation.

cone

Extra = diameter-left-side /
diameter-right-side, i.e;
Extra = 1: cylinder;
Extra = 0: “real” cone.

pipe

Extra = outer-diameter / inner-
diameter, i.e;
Extra = 1: cylinder that is
completely hollow;
Extra = 0: cylinder without a
hole.

gearwheel Extra is the number of teeth of
the gear.

spring

Extra is the number of wind-
ings of the spring. Additional-
ly, “height” is not the “height”
but 2*coil–width.

The geometry of every multibody part is an assembly
of different instances of the Visualizers.Ad-
vanced.Shape model. As an example, the instances
of Shape in the example model Modelica.Me-
chanics.Examples.Elementary.DoublePendulum are
shown in XML file in Figure 2.3.

Figure 2.3 Geometries of DoublePendulum

2.2 Framework

MWorks[5][6] consists of five modules: Modeling en-
vironment, Compiler, Analyzer, Solver and Post-
processor. Modeling environment allows users to
new a Modelica model by using drag-drop operation
or text. Compiler compiles models by running lexical,
syntax and semantic checks and generates flat equa-
tion systems of models. Analyzer analyzes flat equa-
tion systems from Compiler by carrying out structur-
al consistency check, variable substitution, BLT de-
composition and high index DAE reduction, and
outputs index-1 DAE equation sequences. Solver
solves the index-1 DAE equations in order and out-

puts the file of simulation results. Post-processor
reads the result file and displays results in curves or
in animation.

Figure 2.4 Process of MWorks

The process of animation post-processor in MWorks
is as follows (see Figure 2.4): Firstly, post-processor
reads and parses the result file to generate informa-
tion for animation including geometric data (shape,
position, material), animation data, curve data, etc.;
Secondly, the post-processor uses ACIS to create
geometries based on geometric data, and then uses
HOOPS to render and display 3D geometric models;
Thirdly, the post-processor generates transformation
matrices of each animation frame based on anima-
tion data, which drive model to move; Finally, the
post-processor responds to user’s operations to begin

animation, stop animation, rotate or translate model
and so on.

3 Implementation

The key factors of the implementation of the anima-
tion post-processor include process of geometry
creation and display, performance of data manage-
ment and convenience of interactive interfaces.

3.1 Geometry Creation and Display

The mechanism of geometry creation and display is
the core of animation post-processor, and its design
directly affects the performance of the post-processor.
The process of creating and displaying geometry in
MWorks is shown below (see Figure 3.1):
(1) Create a top geometric model and initialize it;
(2) Check whether all parts have been created, if yes,

go to step (6), if no, go to step (3);
(3) Create a part in the top model relative to the

world coordinate system;
(4) Create a geometric entity relative to the part

coordinate system by the following steps:

Figure 3.1 Process of Geometry Creation and Display

(i) Check whether the geometry is defined by an
externally imported graphic file, if no, that is,
the geometry is a standard graphic element,
go to step (ii); if yes, go to step (iii);

(ii) Invoke the responding ACIS APIs to create
geometric entity according to the element
type of the geometry, then triangulate it and
generate HOOPS Shell (a collection of poly-
gons that forms a 3D object);

(iii) Check whether the imported file is in
HOOPS format, if no, invoke self-defined
APIs to parse the file and generate HOOPS
Shell; if yes, invoke HOOPS APIs to parse
the file and return the geometric object;

(5) Render the geometry, then go to step (2);
(6) Read the result file to generate transform matric-

es of each animation frame and save them to buf-
fer;

(7) Drive animation of the multibody model.

At present, the post-processor of MWorks can sup-
port the following formats: STL file (.stl), HOOPS
file (.hsf and .hmf), ADAMS shell file (.shl), etc.

3.2 Data Management

3.2.1 Management of Geometric Data
After reading the result file, the post-processor ob-
tains the data used for creating geometries. In order
to improve the efficiency of accessing data, the geo-
metric data of all instances of the Visualiz-
ers.Advanced.Shape model are saved in special data
structure combining map container and struct pointer.
The definition of data structure is given below:

3.2.2 Management of Model Data
The post-processor of MWorks uses tree structure to
represent model data. A Model, which represents a
multibody model, contains a number of Parts. A Part
consists of a number of Shapes, which implies an
instance of Visualizers.Advanced.Shape model (see
Figure 3.2). Meanwhile, HOOPS uses Segment to
describe model data, and one segment maps one
HOOPS key. So the key problem in management of
model data is how to build the tree structure of mod-
el using the HOOPS key.

MWorks uses C++ inheritance mechanism to build
the two-way mapping between Entity pointer and
HOOPS key by creating Entity class (all of Model,
Part and Shape are inherited from Entity). This me-
thod can effectively solve the key problem in man-
agement of model data. We can use the implementa-
tion of highlight picking up as an example: we firstly
use mouse to select certain geometric object, and
then invoke HOOPS API to obtain the HOOPS key
of that object. The corresponding entity pointer of
that object can be obtained by the two-way mapping.
We finally invoke interfaces to modify the color and
transparency of the entity, which indicates that the
object is picked up.

Model Hierarchy

Two-Way Mapping between Entity and HOOPS Key

Figure 3.2 Structures of Model Data

3.2.3 Management of Animation Data
The 3D animation can be viewed as display of a se-
quence of picture frames. The position of each part
of model has been changed once after each picture
frame is displayed, which can be represented by a
4*4 matrix, namely transformation matrix. In order
to enhance the efficiency of reading and writing
animation data, we adopt the consecutive memory
storage method (see Figure 3.3). This method stores
the data of the same type in a continuous memory
area, so that the data can be easily accessed through
its first address and block length.

Figure 3.3 Physical Structure of Animation Data

3.3 Interactive Interfaces

The animation post-processor of MWorks uses MFC
multiple document/view framework, which allows
the user to open a number of relatively independent

animation windows at the same time. The animation
interface menu provides four kinds of functions (see
Figure 3.4): (1) view splitting function to allow users
to view animation in different split views from dif-
ferent perspectives; (2) model operation function to
allow users to rotate, translate, zoom and highlight
pick up model and to change the display mode,
which can be wire-frame mode, hidden mode, pers-
pective mode and shadow mode; (3) view operation
function to allow users to change the observing view,
which can be front view, rear view, left view, right
view, upward view, downward view or axonometric
view, etc.; (4) animation control function including
the operations of starting animation, suspending
animation, reversing animation, resetting animation,
adjusting animation speed or recording animation
video.

Figure 3.4 Animation Interfaces of MWorks

4 Examples

ACIS and HOOPS-based animation post-processor
of MWorks has been successfully applied to simula-
tion of MultiBody system based on Modelica.

4.1 Examples from Standard MultiBody Li-
brary

Take model Modelica.Mechanics.MultiBody.Ex-
amples.Loops.EngineV6 as an example. The results
are shown in Figure 4.1 after the model is compiled,
analyzed and solved. Figure 4.2 shows the results of
another example of Modelica.Mechanics.Multi-
Body.Examples.Systems.RobotR3.fullRobot. In
post-processor window, the left is its axonometric
view in shadow mode, the upper-right is its front
view in hidden mode and the bottom-right is its de-
fault view.

4.2 Application in Aircraft Field

Cooperating with Commercial Aircraft Corporation
of China, Ltd., MWorks accomplished the simulation
of aircraft landing gear under various working condi-
tions. (See Figure 4.3)

Figure 4.1 Animation of Example EngineV6

Figure 4.2 Animation of Example fullRobot

Figure 4.3 Animation of Aircraft Landing Gear

5 Conclusions

Based on ACIS and HOOPS, MWorks platform im-
plements an animation post-processor for multibody
systems. It has the advantages of convenient human-
computer interaction, real-time geometric rendering,
high fidelity animation effects, powerful model data
management and good expandability, and has been

successfully applied to some practical projects. The
further work of animation post-processor of MWorks
is to support flexible multibody animation, which has
two tasks: (1) providing interface for common finite
element software such as ANSYS and ABACUS; (2)
supporting the animation of flexible body in flexible
multibody library in Modelica.

Acknowledgments

The paper was supported by National Nature Science
Foundation of China (No.60874064, No.60704019),
National Science & Technology Major Project of
China (No.2009ZX040001-015).

References

[1] ACIS online help. Spatial Technology Inc.
http://www.spatial.com.

[2] HOOPS 3D Application Framework.
HOOPS online help. Tech Soft American Inc.
http://www.hoops3d.com.

[3] Zan Wang, Chao Xu, Xiang Xue. The Visua-
lization Interaction Between ACIS and
HOOPS. Group Technology & Production
Modernization 2006, 1(23): 49 – 51.

[4] Hong-Wei Dong, Ru-Rong Zhou, Lai-Shui
zhou. Developing 3D Application Software
Based on ACIS. COMPUTER AIDED EN-
GINEERING 2002, 12 (4): 53 – 58.

[5] Ding Jianwan, Chen Liping, Zhou Fanli. A
Component-based Debugging Approach for
Detecting Structural Inconsistencies in Dec-
larative Equation based Models. Journal of
Computer Science & Technology, 2006,
21(3): 450-458

[6] FAN-LI Zhou, LI-PING Chen, YI-ZHONG
Wu, JIAN-WAN Ding, JIAN-JUN Zhao,
YUN-QING Zhang. MWorks: a Modern IDE
for Modeling and Simulation of Multidomain
Physical Systems Based on Modelica. Mod-
elica 2006, September 4th – 5th: 725-732.

[7] Bo-Xing Wang, Bo Wang, Yun-Qing Zhang.
Model Management in Complicated Mechan-
ical System Simulation Platform. Journal of
Computer-Aided Design & Computer Graph-
ics, 2004, 16(4): 820 – 825.

