
Using Modelica for Interactive Simulations
of Technical Systems in a Virtual Reality Environment

Jens Frenkel1 Christian Schubert1 Guenter Kunze1 Kristian Jankov2

Dresden University of Technology, Institute of Mobile Machinery and Processing Machines
Muenchner Platz 3, D-01066 Dresden, Germany

CNH Baumaschinen GmbH
Staakener Strasse 53-63, D-13581 Berlin (Spandau), Germany

Abstract

Simulation has become an essential tool in the
development of construction machinery. In addi-
tion to the validation of technical features, the as-
sessment of man-machine interaction has become
more important within complex working environ-
ments. In cases where most attention is paid to
the human as the operator, simulations have to
fulfil special requirements. Allowing the user to
interact with the system implies the need for real
time simulation as well as flexible hardware in-
tegration and a powerful visualisation. There-
fore a modular software framework called SAR-
TURIS3 has been developed meeting all these re-
quirements. In order to support flexible multi-
domain modelling the Modelica language is being
used. This paper presents SARTURIS and its ap-
plications, focusing on the integration of Model-
ica based on OpenModelica using the example of
a wheel loader. Since OpenModelica is not yet
able to deal with the Modelica Multibody library,
a Python-based tool called PyMbs has been devel-
oped. It allows comfortable description of multi-
body systems and export to Modelica code as well
as other formats.

Keywords: real time simulation; construction
machinery; virtual reality; OpenModelica;

1 Introduction

A main focus of research is to study the impact of
the operator on mobile machinery. Due to the low
level of automation in such machines, the stress

1TU Dresden http://tu-dresden.de/bft
2CNH Baumaschinen GmbH http://www.cnh.com
3SARTURIS BMBF support code: 01ISC24A

. INPROVY BMBF support code: 02PC1110

on components during usage heavily depends on
the way a machine is operated. Studying this in-
fluence provides essential information needed dur-
ing the design process of such a machine. Ob-
taining these information from experimental data
requires a real prototype and increases demands
on cost and time. Furthermore, it is extremely
difficult to provide equal conditions for each ex-
periment which makes results hardly comparable.
Using simulation instead is a more efficient way of
achieving those results without facing the afore-
mentioned problems. It also can be used for study-
ing dangerous manoeuvres without endangering
man and machine. Thus, simulation proves to be
a valuable tool (see Figure 1).

Figure 1: Motion platform

Only if a sophisticated model of the whole ma-
chine is implemented, significant results can be ob-
tained. Such models always involve different do-
mains like mechanics, hydraulics and control. The
Modelica language is ideally suited for describing
these models, since it has been designed to support
multi-domain modelling [6]. Moreover, its object-
oriented approach allows reuse and substitution of
submodels, simplifying the creation of a model [8].

The inclusion of an operator, however, is very
challenging. Obtaining a mathematical operator
model, which has to be able to react and decide,
is virtually impossible. Therefore Virtual Real-
ity (VR) is the only viable option leading to a
simulation with a “human in the loop”. There
are a lot of publications describing the use of VR
for analysing the influence of drivers’ behaviour,
e.g. [1][2][3][4]. Furthermore, the development of
the human-machine interface is supported by new
methods of VR technologies. The articles point
out that the current adoption of these technologies
in the industrial sector is rather low [5]. Current
simulation systems support the modelling and use
of VR technologies only to a minor degree. There
is no Modelica tool known to the authors that is
specialised in interactive VR simulations.

A tool is needed that not only carries out calcu-
lations in real time, but also offers realistic graph-
ics as well as a support for a large variety of input
and output devices. The simulation framework
SARTURIS, specifically developed at our insti-
tute towards interactive VR simulation, meets all
the aforementioned requirements including sup-
port for Modelica as primary modelling language.

2 SARTURIS

The simulation framework SARTURIS1 has been
developed at Dresden University of Technology
in cooperation with industrial partners within a
publicly funded (BMBF) research project [10] [11]
[12]. SARTURIS allows interactive simulation
of technical systems in a virtual reality environ-
ment. In order to achieve the best compromise be-
tween performance, portability, and development
methodology, SARTURIS is based on C++ and
uses freely available libraries.

SARTURIS itself is merely a slim application
featuring a module loader establishing a frame-
work for individual software components and

1BMBF support code: 01ISC24A

thereby enabling reusability (Figure 2). Efficient
creation of new software components is guaran-
teed through the use of Model Driven Architec-
ture (MDA). The interaction between these mod-
ules along with their parameterisation is specified
in XML-files. Each software component has its
own XML type definition describing its usage and
configuration as well as the interaction with other
components. Thus automated syntax checking or
even code completion is available. XML files are
either written as plain text or assembled using a
graphical user interface (GUI).

Figure 2: Sarturis Framework

Software components belonging to the same
field of functionality are encapsulated within the
same module. For instance the module Open-
SceneGraph (OSG) [13], see Figure 2, contains all
necessary functions to achieve a realistic 3D Vi-
sualisation. A comprehensive set of modules has
already been created. Graphical User Interfaces
can be defined within the XML files by using a
module referencing the GIMP-Toolkit (GTK) [14].
In order to integrate miscellaneous input and out-
put devices a module featuring Controller Area
Network (CAN) communication has been imple-
mented [15]. Even our motion platform (Figure
1) can be operated via SARTURIS by means of a
corresponding module.

To support the development of additional mod-
ules several different interfaces have been designed
in C++. Every implementation of a technical
model inherits from an according interface like
HDAESystem.

3 Integrating Modelica Models
into SARTURIS

3.1 Initial Situation

Every technical system which is to be simulated
within SARTURIS forms a module on its own,
that contains a class which inherits from the inter-
face HDAESystem. Therefore it was necessary to
translate the system equations directly into C++
code. Although C++ is extremely powerful as a
programming language it is ill-suited for modelling
purposes. Hence, the integration of a new model
was very tedious and error-prone. Moreover, the
resulting code was neither reusable nor maintain-
able.

The Modelica language on the other hand facil-
itates convenient modelling of technical systems.
The model description is reusable and easily main-
tainable through its equation-based and object-
oriented approach. Furthermore it is very flexible
due to the acausal description.

In order to combine the strengths of Modelica
and the capabilities of SARTURIS, a transforma-
tion of Modelica code into C++ code was needed.
OpenModelica [22] proves to be the best solution,
since it is able to translate Modelica models into C
code. Beyond that, the usage of open-source soft-
ware is very beneficial to universities since it of-
fers great flexibility and can be used for teaching.
Furthermore, every user has the opportunity to
get involved in the development of the simulation
software through the OpenModelica Consortium.

3.2 OpenModelica Code Export

Before discussing the integration of the OpenMod-
elica Code Export into SARTURIS, a brief in-
troduction on how the OpenModelica Compiler
(OMC) translates Modelica code into a simulation
shall be given. This process is divided into differ-
ent stages which are shown in Figure 3. First,
the given coherent Modelica model is translated
into a flat model where all of the object-oriented
structures are removed yielding a system of differ-
ential and algebraic equations. Next, this system
of equations is analysed and optimised with re-
gards to numerical integration. Consequently the
resulting system of equations is passed to a code
generator which converts the optimised system of
equations into C Code.

The so-called C Code Export yields the follow-
ing files:

• Text file (init file) containing all initial val-
ues and information about the system and the
solver.

• C source code file (c model) containing all
equations arranged so that they can be read-
ily used with the supplied solver.

• C source code file (c model functions) con-
taining all functions both external and inter-
nal which are used in the model.

• precompiled libraries (sim libs) containing all
model independent functions needed for link-
ing

The c model and the c model functions are com-
piled and linked against the sim libs using an ap-
propriate C/C++ Compiler resulting in a stand
alone programme which runs the simulation and
stores the result in a text file. This file contains all
the values of the states, their derivations and the
algebraic variables that occured during the simu-
lation.

Figure 3: Translation Stages from Modelica Code
to a Simulation. According to [9], p. 10

3.3 Integrating the OMC Code Export
into SARTURIS

To transfer C code generated by the OpenModel-
ica Compiler automatically into C++ code which
can readily be used within SARTURIS as a mod-
ule, the following two steps have to be carried out.

In the first step information about the model
has to be gathered in order to generate the C++
class interface along with its XML type definition
as described in section 2. Following information is
needed.

1. names of all

(a) inputs

(b) outputs

(c) parameters

(d) states

(e) algebraic variables

2. default values of all parameters

3. initial values of all states

The init file, as part of the OMC Code Export,
provides most of the information except 1.a and
1.b. All information but 2. and 3. is stored within
the c model. Since there is no single file containing
all the information needed, both, the init file and
the c model have to be evaluated.

The second step is to convert the C code gen-
erated by the OMC into C++ code implementing
a SARTURIS module. A major requirement is to
minimise changes within the C code. Ideally, it
should be possible to use it without any modifi-
cations at all by encapsulating it into a wrapper
class. Unfortunately this does not seem to be pos-
sible as discussed in the following sections. Fur-
thermore, the system of differential equations and
the solver should be separated. Thus results of
different solvers can be compared without having
to recompile the model. So far the DASSL-solver
which comes with OpenModelica and some stan-
dard solvers like an Explicit Euler and a fourth
order Runge Kutta solver have been implemented.
A current student project is dealing with the in-
tegration of the SUNDIALS package [16].

3.4 Automation

A tool called OpenModelicaToSarturis (OM2S),
see (Figure 4), has been developed which auto-

mates the procedure outlined in the previous sub-
section. It enables the user to generate a SAR-
TURIS module without writing a single line of
C++ code. Thus, models developed in Modelica
can be easily used within SARTURIS for interac-
tive VR simulations.

Figure 4: OpenModelicaToSarturis: Automated
Translation of Modelica Models into a SARTURIS
Module

The whole compilation process from a Mod-
elica model to a SARTURIS module is coordi-
nated by CMake [17]. Thereby, custom build rules
can be defined easily and it is possible to detect
utility programmes, libraries and include direc-
tories in a platform neutral manner. It gener-
ates makefiles and workspaces which can be used
with any supported compiler. At the beginning
of the compilation process OM2S is started which
then launches the OMC. Communication between
OM2S and OMC is achieved via CORBA, offer-
ing a convenient interface to trigger the transla-
tion of a Modelica model. Subsequently, OM2S
turns the C code into C++ code implementing
a SARTURIS module. Simultaneously, a sample
SARTURIS configuration is generated featuring a
diagram for each state as well as sliders for each
input value. After the compilation process is fin-
ished, SARTURIS can be launched with the sam-
ple configuration [18]. It allows validating the re-
sults immediately and it may also be used as a
template for more complex settings.

3.5 Difficulties And Suggested Solu-
tions

This section describes the difficulties encountered
during the integration of the OMC Code Export
into SARTURIS and the measures taken to over-
come them. In addition, suggestions to improve
the OMC Code Export regarding usability are
given.

3.5.1 Gathering System Information

Gathering system information needed for the class
interface as well as the XML type definitions, re-
quires a parsing of the init file and the c model.
Parsing the init file can be achieved using inter-
nal functions of the sim libs which are called at
every start of a simulation run. Analysing the C
code however proves to be much more challenging.
The current implementation reads the C code line
by line looking for unique keywords. All names of
the state variables, for instance, are stored within
the static array state_names which always has the
form of char* state_names[2]={"h", "v"};. Once
such a line is identified, all relevant information is
extracted.

Clearly, a change in the formatting of the source
code will inevitably leads to an abstraction of
wrong information or none at all. Thus, pars-
ing generated C code in order to gather informa-
tion about the system should generally be avoided.
One feasible solution is to extend the init file by
the names of the inputs and outputs. Thus all in-
formation could be extracted from a single text
document. Furthermore it allows changing the
values of inputs which are assumed to be zero oth-
erwise. One might also consider to change the for-
matting of the init file into a standardised format
like XML. This would enable checking the syn-
tax against a language definition and use readily
available parsers to extract all the information.

Another possible solution is to extend the
CORBA interface by single or multiple commands
that return all system information. Although this
is very elegant from a programmer’s point of view,
it limits the possibilities of usage. It would not be
possible to gather system information, if only the
code export but no OMC was available.

3.5.2 Using the C Code

Encapsulating the system of differential equations
into its own class poses a problem since the C code

generated by the OMC makes use of global vari-
ables. Namely the structure DATA, which con-
tains the values of all the states, algebraic vari-
ables and parameters is always referenced via a
global variable called localData. The usage of
global variables, however, has to be avoided when
dealing with classes since it causes unwanted in-
terference between different instances of the same
class. Consequently, every function has to be con-
verted into a function of the class. It can be
achieved by adding a prefix, consisting of the name
of the class, to every function definition.

Again, parsing and changing the provided C
code is not an elegant solution since changes to
the C code might cause this method to fail. In
order to avoid altering the C code and to allow
the use of a wrapper class, all global variables
should be eliminated. If a subroutine needs access
to localData it should provide a pointer to this
structure in its function definition such that the
caller is able to pass the structure. The interface
of the DASSRT solver for example also features
two pointers, namely rpar und ipar, see Figure 5.
They can be used to pass lists of real and integer

1 void DDASRT(
2 int (∗ r e s) (. . . , double ∗ rpar , long∗ i pa r) ,
3 . . .
4 double ∗ rpar ,
5 long ∗ ipar ,
6 int (∗ j a c) (. . . , double ∗ rpar , long∗ i pa r) ,
7 int (∗g) (. . . , double ∗ rpar , long∗ i pa r) ,
8 . . .) ;

Figure 5: Interface Solver DDASRT

parameters to DASSRT. Beside parameters like
start time and stop time, the DASSRT interface
expects multiple pointers to user functions. These
user functions perform the calculation of the resid-
uals, Jacobian matrix or constraints, respectively.
All these user functions are called by DASSRT
and need access to the information stored in lo-
calData. The parameter ipar could be exploited
passing the address to localData via a static type-
cast from long* to DATA* and back, see Figure 6.
Since both types are pointers no conflicts regard-
ing the size of the variable have to be expected.

Thus it is possible to change all global variables
into local ones and thereby to increase the usabil-
ity of the C code.

1 . . .
2 s t a t i c DATA∗ l oca lData ;
3 . . .
4 int functionDAE_res (. . . , long int∗ i pa r)
5 {
6 . . .
7
8 return 0 ;
9 }

1 . . .
2 int functionDAE_res (. . . , long int∗ i pa r)
3 {
4 . . .
5 DATA∗ l oca lData ;
6 loca lData=(DATA∗) ipa r ;
7 . . .
8
9 return 0 ;

10 }

Figure 6: local DATA* vs. global DATA*

3.5.3 Implementation

In order to prove feasibility of the suggested so-
lutions, the following changes have been imple-
mented into a local copy of the OMC source code:

1. Extending the init file by the names of inputs
and outputs

2. Turning localData into a local variable

It has been proved that these changes allow
a much more convenient subsequent use of the
source code generated by the OMC.

4 PyMbs

A major drawback connected with the usage of
OpenModelica is the missing support for the Mod-
elica.Mechanics.Multibody library. Since multi-
body systems form an essential part in the study
of mobile machinery, a tool called PyMbs written
in Python has been created at Dresden Univer-
sity of Technology. Using sympy [21], a library
for symbolic mathematics, PyMbs generates the
equations of motion of arbitrary holonomic multi-
body systems having the standard form

ṗ = v

Mv̇+h = f +
(

dΦ

d p

)T

λ

Φ(p) = 0

where p is the vector of generalised positions, v
the vector of generalised velocities, λ the vector
of constraint forces or Lagrange multipliers re-
spectively, M represents the system mass matrix,

h is the vector of the gyroscopic and centrifugal
forces, f is the vector of all external and elastic
forces and Φ contains all holonomic constraints.
PyMbs is able to export this system of equations
as Modelica code which can then be used within
a Modelica model and simulated using OpenMod-
elica. It can also be exported as a MATLAB or
a Python file for the use with standard solvers.
In order to avoid extremely long equations when
calculating the mass matrix M or the vector h ex-
plicitly, a recursive formulation [7] exploiting the
structure of the multibody system has been im-
plemented. Arising kinematic loops may either be
closed by introducing kinematic constraints or us-
ing predefined and precalculated kinematic loop
objects describing the relation between dependent
and independent coordinates. This choice either
leads to a DAE or ODE formulation, respectively.

Figure 8 shows an exemplary implementation of
a model of a crane crab and a load (see Figure 7).
The crab may move horizontally in one axis and
the load may rotate around the crab. A force is
applied to the crab modelling the effect of a drive.
Figure 9 shows the Modelica code, automatically
generated by PyMbs. Note, that the model is de-
fined as partial since there is no equation defin-
ing the magnitude of the driving force. In order
to equip PyMbs models with connectors from the
Modelica Standard library a new model inherit-
ing all equations from the PyMbs model should be
created. Inside the new model mechanical connec-
tors can be instantiated and associated with the
corresponding variables as shown in Figure 10.

d

m1

m2

l2

F

Figure 7: Crane Crab

1 from PyMbs . Input import ∗
2
3 # S e t up a new MbsSystem
4 world=MbsSystem ([0 , 0 , −1])
5
6 # D e f i n e I n p u t and Parameters
7 F = world . addInput (’ Force ’ , ’F ’)
8 m1 = world . addParam(’mass 1 ’ , ’m1 ’ , 10)
9 m2 = world . addParam(’mass 2 ’ , ’m2 ’ , 1)

10 l 2 = world . addParam(’ l ength ’ , ’ l 2 ’ , 1)
11 I2 = world . addParam(’ i n e r t i a 2 ’ , ’ I2 ’ , 1/12)
12
13 # D e f i n e Bodies and C o o r d i n a t e Systems
14 crab = world . addBody (name=’Crab ’ , mass=m1)
15 load = world . addBody (name=’Load ’ , mass=m2,
16 i n e r t i a=diag ([0 , I2 , 0]))
17 load . addCoordSys (’ j o i n t ’ , p=[l2 , 0 , 0])
18
19 # Connect Bodies Through J o i n t s
20 world . addJoint (’ TransCrab ’ , world , crab , ’Tx ’ ,
21 s t a r tVa l s=1)
22 world . addJoint (’RotLoad ’ , crab , load . j o in t , ’Ry ’)
23
24 # Add S e n s o r s and Force Elements
25 world . addLoad (’ Driv ingForce ’ , ’ PtPForce ’ ,
26 crab , world , F)
27 world . addSensor (’ Pos i t i on ’ , ’ Distance ’ ,
28 crab , world , ’d ’)
29
30 # C a l c u l a t e E q u a t i o n s o f Motion and Generate Code
31 genEquations (world , e x p l i c i t=True)
32 genCode (’mo ’ , ’CraneCrab_PyMbs ’)

Figure 8: PyMbs Source Code of a Crane Crab

1 // This f i l e was g e n e r a t e d by PyMbs
2 p a r t i a l model CraneCrab_PyMbs
3 // P o s i t i o n s
4 Real [2] q (s t a r t ={1 ,0})
5 " q_TransCrab , q_RotLoad " ;
6 // V e l o c i t i e s
7 Real [2] qd (s t a r t ={0 ,0})
8 " qd_TransCrab , qd_RotLoad " ;
9 // I n p u t s

10 Real F ;
11 // Parameters
12 parameter Real I2 = 0.083 " ine r t i a_2 " ;
13 parameter Real g = 9.81 " g rav i ty " ;
14 parameter Real l 2 = 1 " length " ;
15 parameter Real m2 = 1 "mass_2 " ;
16 parameter Real m1 = 10 "mass_1 " ;
17 // S e n s o r s
18 Real [2] d ;
19 // V a r i a b l e s
20 protec ted
21 Real [2] WF_DrivingForce ;
22 Real [2 , 2] M;
23 Real [2] h ;
24 Real [2] f_grav i ty ;
25 Real [2] f_ext ;
26 Real [2] f ;
27 equat ion
28 der (q) = qd ;
29
30 d = {abs (q [1]) , q [1] ∗ qd [1] / abs (q [1]) } ;
31
32 WF_DrivingForce = {q [1] / abs (q [1]) , 0 } ;
33
34 M = {{m1+m2, l 2 ∗m2∗ s i n (q [2]) } ,
35 { l 2 ∗m2∗ s i n (q [2]) , I2+m2∗ l 2 ^2}};
36
37 h = { l2 ∗m2∗qd [2] ^ 2∗ cos (q [2]) , 0 } ;
38
39 f_grav i ty = {0 ,−g∗ l 2 ∗m2∗ cos (q [2]) } ;
40
41 f_ext = F∗WF_DrivingForce ;
42
43 f = f_ext+f_grav i ty ;
44
45 M∗der (qd) = f − h ;
46
47 end CraneCrab_PyMbs ;

Figure 9: PyMbs Modelica Output

With only few enhancements to the model of the
crane crab, PyMbs is able to generate an interac-
tive graphical output(see Figure 11). It enables
the user to check the consistency of the model by
manipulating the generalised coordinates via slid-
ers. The effect on the multibody system can be
evaluated ad hoc.

In case the available collection of joints, force
elements and sensors do not suffice, PyMbs can
be extended very easily due to its object oriented
structure. Moreover, it takes only very little effort
to implement further output formats.

PyMbs is freely available. For further informa-
tion please contact one of the authors.

1 model CraneCrab
2 extends CraneCrab_PyMbs ;
3 import Modelica . Mechanics . Tran s l a t i ona l . ∗ ;
4 // Mechanica l Connector
5 I n t e r f a c e s . Flange_b f l ang e ;
6 equation
7 f l ang e . s = d [1] ;
8 f l ang e . f = F ;
9 end CraneCrab ;

Figure 10: Usage of PyMbs Output in Modelica

Figure 11: Graphical PyMbs Output of the Crane
Crab

5 Example Models

Based on the described tool chain, several mod-
els have already been implemented. In this paper,
a wheel loader shall be presented (Figure 12 and
13). The purpose of the wheel loader model is
the assessment of innovative operational controls
and novel assistance systems. A realistic driving
experience is achieved by connecting the model

via SARTURIS to a motion platform (Figure 1).
In order to provide the user with his familiar op-
erating environment, the manufacturer provided
a real driving cab, which has been installed onto
the motion platform and is integrated via CAN
Bus (Figure 14).

Figure 12: Virtual Reality Simulation of a Wheel
Loader (Exterior View)

Figure 13: Virtual Reality Simulation of a Wheel
Loader (Operator View)

The mechanics of this model have been de-
scribed using PyMbs, exported to Modelica and
equipped with mechanical connectors. Hydraulics,
drivetrain as well as control systems and a tire
model [23] have been modelled directly within
Modelica. This model was then translated into a
SARTURIS module and integrated into the sim-
ulation environment. It is now possible to run a
model of the wheel loader on the motion platform
which is equipped with the control units (ped-
als, joystick, steering wheel...) from the real ma-
chine. They allow interaction with the simulation
through an operator in real time.

Figure 14: Changing the Cabin of the Motion
Platform

6 Future Work

Increasing pressure on costs and time foster a need
for a more efficient design process. Prior research
has facilitated simulation processes that enable
companies to shorten the design process by using
virtual prototypes. However, these methods are
hardly used in the branch of mobile machinery.
Machines comprise numerous components manu-
factured by different companies. Thus, successful
simulation requires a cooperation of the manufac-
turer and his suppliers. Due to the risks connected
with transferring crucial information a coopera-
tive simulation process has not yet been estab-
lished in industry. INPROVY2 [20], a research
project coordinated by the Dresden University of
Technology, aims at overcoming those obstacles by
providing methods that allow simulations across
company borders. Furthermore, our research fo-
cuses on the reuse of available information and its
administration as well as its protection.

2BMBF support code: 02PC1110

7 Conclusion

It was shown that it is possible to conduct real
time simulations in a virtual reality environment
with Modelica by using our simulation framework
SARTURIS. A tool called OpenModelicaToSar-
turis has been developed which automatically con-
verts Modelica models into SARTURIS modules
using OpenModelica. The lacking support of the
Modelica.Mechanics.Multibody library by Open-
Modelica has been overcome by using PyMbs.
PyMbs is a tool, developed in Python, which al-
lows modelling of holonomic multibody systems.
It offers different output formats like Modelica,
MATLAB and Python code. The presented meth-
ods and tools are very beneficial to support the
modelling and use of interactive VR technologies.

Dresden University is very interested in cooper-
ation with other universities which might want to
use SARTURIS for their research.

References

[1] Koo, T. Y.; Bae, C. H.; Kim, B. Y.; Rowland,
Z.; Suh, M. W.: Development of a driving sim-
ulator for telematics human-machine interface
studies.-Proceedings of the Institution of Me-
chanical Engineers, Part D (Journal of Auto-
mobile Engineering) * Band 222 (2008) Heft
11

[2] Zschocke, A. K.; Albers, A.: A method to
examine links between subjective and objec-
tive evaluations of steering torque utilising a
model-based approach.-FISITA, World Auto-
motive Congress, 32 * (2008)

[3] Pasetto, M.; Gamberini, L.; Manganaro, A.:
Potential of immersive virtual reality models
in studies of drivers’ behaviour and interven-
tions to improve road safety.-PRESENCE, An-
nual International Workshop on Presence, 11
* (2008)

[4] VTT Technical Research Centre of Finland:
HumanICT - New Human-Centred Design
Method and Virtual Environments in the De-
sign of Vehicular Working Machine Interfaces
VTT Working Papers.-ISBN-Nr.: 978-951-38-
6625-9

[5] Strassburger, S; Schulze, T.; Fujimoto, R.: Fu-
ture trends in distributed simulation and dis-

tributed virtual environments.-WSC, Winter
Simulation Conference, 40 * (2008)

[6] Beater, P.; Otter, M.: Multi-Domain Simula-
tion: Mechanics and Hydraulics of an Excava-
tor. In: Proceedings of Modelica 2003 confer-
ence, 2003

[7] Fisette, P.; Samin, J. C.: Symbolic genera-
tion of large multibody system dynamic equa-
tions using a new semi-explicit Newton/Euler
recursive scheme. Archive of Applied Mechan-
ics, Vol. 66, Issue 3, pp. 187-199 (1996)

[8] Fritzson, P.: Principles of Object-
Oriented Modeling and Simulation with
Modelica2.1.Wiley-IEEE Press, 1 2004.

[9] Fritzson, P.; et al.: OpenModelica Sys-
tem Documentation.www.openmodelica.org, 1
2008.

[10] Penndorf, T.; Kunze, G.: Codegen-
erator fuer die Echtzeitsimulation von
Mehrkoerpersystemen.-ASIM 2006 19. Sym-
posium Simulationstechnik, Universitaet
Hannover, September 2006

[11] Penndorf, T.: Universelles Framework
zur Abbildung von Maschinenmodellen in
virtuellen Umgebungen. In: Schriftenreihe
der Forschungsvereinigung Bau- und Baustoff-
maschinen (2006) 34

[12] Penndorf, T.; Kunze, G.: “Durchgespielt”-
Interaktive Simulation von Baumaschinen.
IX-MAGAZIN FUER PROFESSIONELLE
INFORMATIONSTECHNIK Heft 08/2007.-
Heise Zeitschriften Verlag, Hannover

[13] OpenSceneGraph,
http://www.openscenegraph.org/

[14] GTK, http://www.gtk.org/

[15] CAN in Automation e. V.. http://www.can-
cia.org

[16] SUNDIALS (SUite of Nonlinear and
DIfferential/ALgebraic equation Solvers)
http://www.llnl.gov/CASC/sundials/

[17] CMake, http://www.cmake.org/

[18] Frenkel, Jens: Integration von OpenModel-
ica in das Programmsystem SARTURIS.-TU

Dresden, Professur fuer Baumaschinen- und
Foerdertechnik, Diplomarbeit,Februar 2009

[19] Schubert, C.; Frenkel, J.: PyMbs Userguide.-
TU Dresden, Professur fuer Baumaschinen-
und Foerdertechnik, Forschungsbericht,
September 2009

[20] www.inprovy.de

[21] sympy, http://code.google.com/p/sympy/

[22] OpenModelica,
http://www.openmodelica.org/

[23] Zimmer, Dirk and Otter, Martin(2009)’Real-
time models for wheels and tyres in an object-
oriented modelling framework’,Vehicle System
Dynamics,99999:1,

