
Dymola and Modelica_EmbeddedSystems in Teaching –
Experiences from a Project Course

Johan Åkessonab Ulf Nordströmc Hilding Elmqvistc
aDepartment of Automatic Control, Lund University, Sweden

bModelon AB, Lund, Sweden
cDassault Systèmes, Lund, Sweden (Dynasim)

Johan.Akesson@control.lth.se Ulf.Nordstrom@3ds.com Hilding.Elmqvist@3ds.com

Abstract

This contribution presents experiences from a master
level project course where the Modelica-based tool
Dymola, supporting embedded control system de-
sign, has been used. In a recent initiative, the Mod-
elica language has been enhanced to support model-
ing of embedded systems and code generation tar-
geted at micro processors.1 The new specification is
supported by Dymola and enables wide range of de-
sign tasks to be performed in a unified framework.
Such tasks include software in the loop simulation to
test controller code in simulation, hardware in the
loop simulation, and final deployment on the target.
In the context of teaching, the new features of Mod-
elica/Dymola enable universities to offer a realistic
environment providing students with hands on expe-
riences from model-based control system develop-
ment.
Keywords: Modelica; Dymola; Embedded Control
Systems; Teaching

1 Introduction

Much effort is devoted to studies of analysis and
synthesis methods in engineering programs oriented
towards systems and control. Often, the course mate-
rial is mainly of theoretical nature, sometimes com-
plemented with laboratory sessions. To further
strengthen the practical skills of the students, a pro-
ject course, “Projects in Automatic Control” is of-
fered by the Department of Automatic Control, Lund
University. The main themes of the course are prac-
tical application of theoretical skills acquired in pre-
vious courses and working in teams.

This contribution describes two projects that were
part of the course of 2009, where Dymola and Mod-

1 This effort has been performed within the EURO-
SYSLIB project.

elica_EmbeddedSystems was used to develop con-
trol systems for two-wheel robots, Figure 1, built
using the Lego Mindstorms NXT platform.

The paper is outlined as follows. In Section 2, an
overview is given over different approaches to teach-
ing embedded systems and control, and in Section 3
the Project in Automatic Control course is described.
Section 4 and 5 describes, respectively, the Mod-
elica_EmbeddedSystems library and the
LEGO_Mindstorms library. In Section 6, some
common usage scenarios are discussed and in Sec-
tion 7 the fixed point code generation module of
Dymola is outlined. The paper ends with a review of
the course results in Section 8 and a summary in Sec-
tion 9.

Figure 1. Lego robot

2 Background

Teaching of embedded control systems requires in-
sights into different disciplines, including mathe-
matical modeling, control system design, and com-
puter science. In the latter case, real-time systems are
particularly important. Embedded control systems
are distinguished by the complex interplay between
the behaviors of the controller to be implemented,
typically designed in continuous time, the discretiza-
tion method used in order to obtain a discrete time
approximation of the controller, and the properties of
the execution environment. In order to analyze the
closed loop behavior of the controlled system, all
three aspects need to be attended to.

Teaching of embedded systems can be ap-
proached in several ways, using different levels of
abstraction. At the lowest level, control systems are
encoded in C, or even assembly. The control system
is then typically run without an operating system and
periodic processes, or tasks, are mapped onto timer
interrupts. Using this approach, the modeling and
control systems design is typically done prior to the
encoding phase, using different tools and method-
ologies. It is also common that controllers need to be
translated into fixed-point arithmetics. From a peda-
gogical perspective, this method has distinct advan-
tages and disadvantages. Coding an embedded con-
trol system in a low level language, perhaps includ-
ing manual fixed-point conversion, does indeed
promote understanding of the tasks involved. Also,
mapping of periodic tasks onto hardware interrupts
further strengthens the student’s understanding of the
methods involved. On the other hand, modeling and
control system design is disjoint from the actual en-
coding and execution of the control system. Debug-
ging is often further complicated by limited means to
log signals in the embedded control application.

At the next level of abstraction, a high-level lan-
guage, relative to C or assembly, can be used for im-
plementation. For example, Java offers suitable ab-
stractions for creating periodic tasks, e.g., threads
and synchronization. Also, there are platforms pro-
viding Java support, including Lego Mindstorms
NXT. Modeling and control system design, pro-
ceeds, however, as with the previous approach, and
is typically disjoint from the actual implementation.
Never the less, this approach captures important as-
pects of embedded control system, such as multi-
threaded applications and the consequences thereof.

In order to promote joint modeling, control sys-
tems design and implementation, tools like Real-
Time Workshop for Matlab/Simulink are available.
A similar tool is Scilab/Scicos. Such tools offer
strong support for block-based modeling, which is

well suited for development of control systems.
Real-Time Workshop may then translate the block-
oriented graphical Simulink model into executable C
code, which in turn can be compiled and downloaded
to the target processor. Using the simulation capa-
bilities of Simulink, the control system can be simu-
lated together with a model of a physical plant in
order to assess the closed loop behavior prior to de-
ployment. There is also a toolbox for fixed-point ar-
ithmetics available for Simulink as well as a freely
available toolbox for simulation of the temporal be-
havior of embedded kernels and computer networks,
TrueTime [1].

The approach taken in this paper is similar to that
of Matlab/Simulink and Real-Time Workshop. The
simulation software Dymola is used for physical
modeling as well as development of the control sys-
tem. Modelica is used as modeling and implementa-
tion language. As compared to Matlab/Simulink,
Modelica offers stronger support for physical model-
ing, and supports advanced modeling concepts such
as object orientation, equations, and acausal connec-
tions between components. An additional advantage
of Modelica is that the code is available to the user,
which adds to the transparency of the method. Using
novel features of Dymola and additions to the Mod-
elica language explored in the Modelica_Embedded
library, it is possible to generate C code, automati-
cally translated to fixed-point if desired, correspond-
ing to the control system. The generated C code may
then be either compiled and downloaded to the target
or compiled and linked with a simulation executable.
The latter case enables detailed study, in simulation,
of the closed loop behavior of the system prior to
deployment.

The method of automatic code generation from a
high-level description is a novel addition to the
course portfolio of Automatic Control. Joint control
system design and implementation on embedded
platforms has been a long-standing theme of the de-
partment, both in research and in teaching, but so far,
C and Java (and previously also Modula-2) has been
used as implementation languages. Dymola and
Modelica therefore offer an appealing complement
for providing the students with experiences from a
different environment.

3 Project in Automatic Control

The Department of Automatic Control has a long
tradition of laboratory work in control education.
Laboratory sessions are included in all theoretically
oriented courses and some courses also offer small
projects. In order to further strengthen the practical

and experimental skills of the students, a dedicated
project course is offered to master’s level students.
The course gives 7.5 ECTS units and is categorized
as advanced level. The syllabus of the course chan-
ges each year depending on the number of students
and the availability of interesting projects, usually
with connection to research or industrial applica-
tions. The projects are typically set up so that the
students need to go through several steps in the de-
sign cycle, including mathematical modelling, pa-
rameter identification based on measurement data,
control design, control system implementation, user
interaction and testing. The examination of the
course consists of weekly meetings with a teacher, a
written report and an oral presentation.

The students in the course have in most cases
taken several control courses covering topics such as
linear and non-linear control system design, multi-
variable control, sampled systems and real-time sys-
tems. For a list of courses offered by the Department
of Automatic Control, see [2]. In the project course,
the students need to apply their knowledge from pre-
vious courses in order to solve a larger design prob-
lem in a team consisting of three to five students.
More often than not, the course helps the students to
put their theoretical knowledge into a practical per-
spective where sensors and actuation, unit conver-
sions, and limited computing resources play import-
ant roles.

For the course as of spring 2009, the Lego Mind-
storms NXT [6] platform was selected as a basis for
the course projects. The platform features several
possibilities for sensors and actuations, also from
third party manufacturers, and the embedded micro
processor can be programmed in several ways using
e.g., C/C++, NXC or Java. Out of 22 students in
total, two teams of five students in each were selec-
ted to perform projects where the Dymola software
was used for modeling, control design and embedded
code generation.

3.1 Project infrastructure support

In order to emphasize and support the collaborative
character of the projects, a version control repository
and a web-based tool for project planning were made
available for each project group. As for version con-
trol, Subversion [3] was used and Trac [4] was used
as project planning platform. The objective of intro-
ducing these tools in the course was to add an addi-
tional element of industrial realism to the projects.
Also, the students were required to prepare each
weekly meeting with their teacher by updating the
Trac site to reflect the current status of the project.

Throughout the projects, the students had access
to a lab where the Lego sets and computers for de-
velopment were available.

3.2 Tutorials

All students in the course were offered a tutorial on
how to use Trac and Subversion, since few had any
experience of such tools. The students participating
in the Dymola projects were offered additional tuto-
rial lectures in order to get started with the course
work. A basic tutorial on how to operate the Lego
Mindstorms NXT hardware was offered in the be-
ginning of the course, with the objective of introduc-
ing the students to basic operation such as reading
from sensors, compilation of programs, and down-
loading and running programs. Since the students
lacked previous experience with Modelica, an intro-
ductory lecture was given. The tutorial covered basic
Modelica features, including textual and graphical
modeling, as well as an introduction to Dymola. Fi-
nally, a lecture on advanced Modelica and multi-
body modeling was offered, covering also the anima-
tion features of Dymola. The final lecture was given
by personel from Dynasim, whereas the three first
were given by personel from the Department of Au-
tomatic Control.

The initial tutorial lectures given early in the
course provided the students with sufficient informa-
tion to get started with Modelica and Dymola. How-
ever, some additional support in the form of informal
tutorials in front of the computer was also needed,
especially in order for the students to learn how to
use the new advanced features related to Mod-
elica_EmbeddedSystems and code generation.

3.3 Project task

The task for the students to solve was to construct a
two-wheel robot, see Figure 1, and to develop a
model-based stabilizing control scheme using Mod-
elica and Dymola. Dynamic modeling of the robot
was done using the multi-body library in Dymola.
While modeling of the mechanical parts is fairly
straightforward, the Lego servos pose a challenge. In
order to obtain a good model for these, identification
experiments need to be performed. This was made
possible by the data-logging feature of Dymola; a
small Modelica test program was downloaded and
the resulting signals were logged back to Dymola
over the BlueTooth communication link. Having
constructed a dynamic model, a linearized approxi-
mation can be derived and exported from Dymola.
Both groups opted to use a state feedback controller
designed using Control Systems Toolbox in Matlab.

Given the controller, sensors and sensor processing
needs to be considered. The Lego servos have built-
in angular measurements, and in addition, one rate
gyro and one accelerometer were available to each
group. In the final step, the control system was de-
signed using blocks from the Modelica Standard Li-
brary, and the details of the embedded platform were
set up. As a parallel task, animation of the robot was
set up in Dymola.

4 Modelica_EmbeddedSystems

The Modelica_EmbeddedSystems library [5] was
used to set up the models for use with embedded sys-
tems. Using components from the library, target con-
figuration records and communication points are in-
serted in the models containing properties of the tar-
get system and computational tasks.

4.1 Communication points

One of the key components of the library is the
CommunicateReal block. It is used to set up
communication with external I/O ports of the target
system or to model the interface.

In the LEGO_Mindstorms Modelica library, de-
scribed in a later section, I/O communications blocks
were implemented such that they fit in the frame-
work set by the CommunicateReal block. The
design allows for straight forward use of the GUI
(parameter dialog) to enable access to the external
I/O blocks by a simple pull-down menu, depicted in
Figure 2.

A user could thus implement new I/O blocks that
would end up in the same dialog for selection.

Figure 2. Lego I/O blocks in the CommunicateReal

parameter dialog

4.2 Configuration records

Another key component of the library is the configu-
ration record that is used to configure the models
with respect to the target platform and task partition-
ing. A configuration record is a user configurable
nested record (record containing records). Depending
on the problem, the record could contain one or more
targets, tasks and subtask. A simple example is de-
picted below, Figure 3, where there is just one target,
one task and one subtask. The additional block with
a Bluetooth icon is from the LEGO_Mindstorms li-
brary and is used to select virtual COM ports for
Bluetooth communication.

Figure 3. Example of configuration record

5 Dymola Lego Mindstorms API

The Lego Mindstorms NXT device can run under
several operating systems. For this project course the
nxtOSEK [7] open source real-time operating system
was selected due to its openness and well doc-
umented C API for sensors, motors and other devices
(including some third party sensors). It provides a C
programming environment using a GCC tool chain
and comes with an extensive set of samples that help
the students to get a throughout understanding of the
platform and interaction with sensors and actuators.
Based on these samples a main program was devel-
oped as a wrapper to the Dymola generated model
code and variable declarations. The main program
handles initialization and termination of sensors and
Bluetooth communication (invoking the hook rou-
tines described in the nxtOSEK C API Reference
[7]) and mapping of system time to fixed-point time
while the Dymola generated code that is included
performs all the computations.

5.1 LEGO_Mindstorms library

The LEGO_Mindstroms library, Figure 4, has been
developed for education and implements communi-
cation blocks and a small set of examples and addi-
tional components.

Figure 4. LEGO _Mindstorms library

The communication blocks can be used in models to
map Modelica variables to low-level C functions on
the Lego Mindstorms NXT device. An example
would be to map the output of a speed controller to
the servo motors and to feed the same controller with
data from the ultrasonic sensor for obstacle detec-
tion.

The communication blocks provide the mapping
to selected function of the API for interaction with
sensors and actuators. Also included are some third
party sensors from HiTechnic [8] and Mindsensors
[9]. The design extends from the Mode-
lica_EmbeddedSystems architecture in such a way
that the various blocks can be conveniently selected
from a drop down list in the parameter dialog of the
CommunicateReal block. This enables the
students to easily configure the interaction with sen-
sors and actuators in their models.

In addition to the standard sensors of the NXT
device the students had access to third party sensors,
some included in the C API for nxtOSEK and some
not included. Currently the following sensors and
actuators are supported:

• ECRobot
o Light sensor
o Servo sensor
o Sound sensor
o Touch sensor

o Ultrasonic sensor
• HiTechnic

o Acceleration sensor (NAC1040)
o Gyro sensor (NGY1044)

• Mindsensors
o Acceleration sensor (ACCL-Nx-v3)

The ECRobot sub package contains the interface
blocks for the standard Lego Mindstorms I/O de-
vises. The blocks contain a mapping to the corres-
ponding nxtOSEK C API functions and utilises the
Modelica external function concept. Below is a sim-
ple example using the Touch Sensor. As can be seen
in Figure 5 the Touch Sensor API takes an U8 (un-
signed 8-bit integer) as argument and returns an U8.

Figure 5. Touch Sensor API (in nxtOSEK)

The corresponding function in Modelica that maps to
this is depicted below in Figure 6.

Figure 6. Modelica function mapping

A block that can be used in the Communi-
cateReal block of Modelica_EmbeddedSystems
is constructed by extending from the appropriate
base class and calling the mapping function, see
Figure 7.

Figure 7. Block calling the mapping function (paths
have been shortened to fit in the picture)

Note that in this first implementation the return type
of the Modelica function is Real even though the C
function returns an integer (U8). This was done to
simplify usage for the students but should be re-

designed for a final version of the library. The type
conversions are handled by Dymola and the C com-
piler automatically. All of the sensors and actuators
in this sub package are standard Lego sensors and
they are all included in the nxtOSEK C API.

The HiTechnic sub package contains the inter-
face blocks to two third party sensors from HiTech-
nic, a gyro sensor and an acceleration sensor. Both
sensors are available in the C API which make the
Modelica implementation straight forward with one
exception. The API for the acceleration sensor,
Figure 8 below, differs in that it takes an integer ar-
ray to store the results in.

Figure 8. Acceleration sensor API (in nxtOSEK)

For this sensor a special wrapper has been written in
C to extract only one of the elements since the Com-
municateReal block in
Modelica_EmbeddedSystems currently only sup-
ports scalars. In Modelica you then choose with a
parameter which axis to read from. The drawback is
that you need three blocks to read all axes compared
to just one function call if using the API as it is.

The Mindsensors sub package contains an ad-
ditional third party sensor: the ACCL-Nx-v3 accel-
eration sensor from Mindsensors. This sensor can be
used either as a tilt sensor or to measure acceleration
in any of the x-, y- or z-axis. It is more sensitive than
the acceleration sensor from HiTechnic and returns
the measured acceleration in units of milli-G, where
G is the gravitational unit. This sensor was not repre-
sented in the nxtOSEK C API so API functions had
to be written manually and supplied to the students.

The Components.BlueTooth sub package
contains a block that is used to set up Bluetooth
communication from the Lego NXT to dymosim (the
standard Dymola simulator). It is designed and tested
only for Windows and uses virtual COM ports for
Bluetooth communication.

5.2 Main program

The main program is based on the sample programs
from the nxtOSEK distribution and acts as a wrapper
to the model code generated by Dymola. It also han-
dles mapping of system clock to fixed-point time
(currently hard coded to 10 fractional bits) and pro-
vides some wrappers and API functions for third
party sensors. Below in Figure 9 the main program is
outlined in pseudo code.

Figure 9. Main program pseudo code

The students could easily modify the program for
more advanced use of the display, reconfiguring,
adding or removing sensors etc. It is also possible to
access all the fixed-point variables for online debug-
ging etc. using their fixed-point representation (inte-
ger values used to store the signals). For more con-
venient debugging the variables can be sent to Dy-
mola using the Bluetooth connection.

6 Dymola and code generation

6.1 Configuring the model for fixed-point

The Lego Mindstorms NXT device does not have
hardware support for floating-point arithmetic’s and
in order to avoid using computationally heavy and
memory consuming floating point math libraries,
fixed-point code is preferred. In order to use the
fixed-point code generation capabilities of Dymola
the model must be annotated with additional infor-
mation. This is done using the min and max attributes
to specify the range of a variable and the relative
resolution with newly introduced experimental anno-
tation, annotation(mapping(resolution=0.001)). In
Figure 10 an example of setting the resolution for
two variables of a component is shown. Note that
this experimental annotation can be set as a modifier.
The information is then used during translation to

allocate integer and fractional bits for the fixed-point
variables.

Figure 10. Fixed-point annotated component

6.2 Code output

When configured for external code generation, Dy-
mola generates two files, namely declaration.c and
equations.c with fixed-point code to be included in
the main program. The code is well documented and
includes the original Modelica code and the assigned
fixed-point format in Q-notation. An example of de-
clatation.c can be seen in Figure 11, note the full
Modelica declaration from where the variable origi-
nates and the Q-notation indicating the number of
integer- and fractional bits.

Figure 11. Declaration of fixed-point variables

All computations are collected in the file equations.c.
Just as for the declarations, the eqation file includes
the original Modelica eqation as a comment for
traceability. Below in Figure 12 is an example of
generated fixed-point code for a ramp-function.

Figure 12. Fixed-point code for an equation

6.3 Bluetooth data logging

It can be a very hard task to debug code in embedded
systems. To make debugging easier, Dymola gener-
ates code (for the Lego Mindstorms NXT target) to

send the internal variables of the target in fixed-point
representation to Dymola using Bluetooth. The re-
ceived values are automatically re-scaled to their
corresponding Real (SIunit) values. This enables
real-time plotting of the internal variables of the tar-
get as well as storing the data.

7 Scenarios

In this course, Dymola and Mode-
lica_EmbeddedSystems were used in several of the
scenarios the students were faced with. Typical such
scenarios are plant modelling and controller design
including development and tuning using Model-in-
the-Loop (MIL) simulation and Software-in-the-
Loop (SIL) simulation. Also for final production
code generation and deployment Dymola was used
(in combination with other tools; Cygwin, GCC to
name the most important).

7.1 Model in the Loop simulation

MIL simulations were performed to test the control
strategy with the student’s model of the robot. These
simulations are typically done with continuous time
(ideal) controllers without taking into account effects
of sample, communication delays, fixed-point arith-
metic’s etc. It serves as a foundation, to validate that
the control strategy is feasible.

To set up the model for MIL simulation one uses
communication blocks from Modelica_Embedded-
Systems. These blocks are inserted between different
parts of the model, for example controller and plant,
to define the border between different tasks.

7.2 Software in the Loop simulation

The next logical step after MIL simulation is SIL
simulation where more detail is included in the con-
troller (non-ideal), in this course, the effects of fixed-
point arithmetic’s in particular.

The model is prepared for SIL simulation by us-
ing the Modelica extends mechanism (inheritance)
together with a modifier with another configuration
record to indicate that the target of the control task
does not have a floating-point arithmetic unit. This
means that the original model is not changed which
is a great benefit in larger projects. The reconfigur-
ing described above is a very simple modification of
the model assuming that the model was correctly
partitioned for MIL simulation and that the configu-
ration records was set up containing all necessary
details. Below, in Figure 13, is an example plot
showing the effects of fixed-point arithmetic’s on a

PI controller with low resolution driving a simple
drive train.

Figure 13. Plot of control signal for a system in closed
loop in floating-point vs. low resolution fixed-point

7.3 Production code

Dymola was used for this final stage to generate
fixed-point C code for the model equations. This
code combined with the main program described in
an earlier section can be downloaded to the Lego
Mindstorms NXT device and run.

As for the case above, SIL simulation, the recon-
figuration is very simple to do. Again the Modelica
extends mechanism is used together with a modifier
to change the configuration record. This new con-
figuration record specifies the target to be a Lego
Mindstroms NXT unit without a floating-point
arithmetic support. Dymola could then recognize this
target and generate code to fit with the main pro-
gram. Code is also generated for dymosim which is
running in parallel with the Lego controller to collect
variable data and convert them for logging, plotting,
animation and debugging using Bluetooth, more on
this in Section 1. Below in Figure 14 an animation of
the Lego robot can be seen.

Figure 14. Dymola animation of Lego robot

8 Student results and experiences

Both project groups working with Dymola reached
their goal of designing a stabilizing controller based
on their multi-body models. The approach was very
similar in both cases, and followed largely the steps
outlined in Section 3.3. However, the students ran
into numerous problems on their way, which needed
attention.

While the students quickly constructed mechani-
cal models for their robots, the servos posed a chal-
lenge, both in terms of unknown dynamics and in
terms of how to connect such a model once available
to the mechanical parts. Much time was devoted to
solve this problem. The diagram layer for a me-
chanical model constructed by one of the student
groups is shown in Figure 15.

Figure 15. A Modelica model for a two-wheel robot
constructed by one of the student groups.

Once a complete model for the robot had been
constructed, linearizations were computed to use in
the control design. In initial attempts, the linearized
models were of high order, in some cases due to
high-order servo models derived by means of black-
box systems identification. While the high-order
models did not impair the possibility to design con-
trollers, problems arose in the controller implementa-
tion phase where the availability of measurement
signals was limited. In order to solve this problem,
simpler models were derived, in particular by simpli-
fying the servo models, and increased attention was
given to the available sensors. In the end, the com-
plexity of the controllers was matched to the avail-
able measurement signals, but without compromising
the model-based approach.

The students experienced some problems with
specification of the mapping of controllers onto
hardware and the fixed-point code generation in
Dymola. Most of the problems were a result of the
beta-status of these features at the time of the course.
The problems where, however, quickly solved and
did not significantly hinder the students in their
work.

The reactions from the students were overly posi-
tive: “great to apply knowledge from previous
courses in practice” and “appreciated the opportu-
nity to work with an industrially relevant tool like
Dymola” were some of the comments. While the
students in some cases were a bit disappointed by
implementing only stabilization but not remote con-
trol the general opinion seems to be that they learnt a
lot. Not the least to put their theoretical knowledge
into a practical perspective.

9 Summary and conclusions

In this paper, we have reported an application of
Modelica in education. Modelica, Dymola, and in
particular Modelica_EmbeddedSystems have been
used in a master’s level course; Project in Automatic
Control. The experiences are very encouraging and
the tools and methods used in the course of 2009 will
be used also in the next year’s course.

References

[1] Cervin, A., Henriksson, D., Lincoln, B.,
Eker, J., Årzén, K-E.: How Does Control
Timing Affect Performance? Analysis and
Simulation of Timing Using Jitterbug and
TrueTime. IEEE Control Systems Magazine,
23:3 pp. 16-30, June 2003.

[2] Courses at Automatic Control:
http://www.control.lth.se/education/civing.ht
ml

[3] Pilato, C., Collins-Sussman, B., Fitzpatrick,
B. (2008): Version Control with Subversion.
O’Reilly Media, Inc.

[4] Trac webpage: http://trac.edgewall.org/
[5] Elmqvist, H., Otter, M., H.,Henriksson, D.,

Thiele, B.,Mattson, S.E.: Modelica for Em-
bedded Systems, Modelica Conference 2009.

[6] Lego Mindstorms webpage:
http://mindstorms.lego.com/

[7] NxtOSEK webpage:
http://lejos-osek.sourceforge.net/

[8] HiTechnic webpage:
http://www.hitechnic.com/

[9] Mindsensors webpage:
http://www.mindsensors.com/

