
Performance Analysis of VON MISES’ Motor Calculus
within Modelica

Tobias Zaiczek Olaf Enge-Rosenblatt
Fraunhofer Institute for Integrated Circuits

Design Automation Division
Dresden, Germany

{Tobias.Zaiczek,Olaf.Enge}@eas.iis.fraunhofer.de

Abstract

This paper presents an alternative concept of mod-
elling multibody systems within Modelica, the so-
called motor calculus. This approach was introduced
by R. VON MISES in 1924 and can be used to describe
the dynamical behaviour of spatial multibody systems
in a very efficient way. While the equations clearly
take a very simple form in terms of motor algebra, the
numerical efficiency is still an open question.

In the paper, first some fundamentals of motor cal-
culus are summarized. An experimental implemen-
tation of motor algebra is used to measure and anal-
yse the numerical efficiency and performance regard-
ing the simulation time of VON MISES’ approach.
Therefore, some components of the Modelica Multi-
body Standard Library were modified in order to com-
pare both implementations. Finally, some examples
are given to prove the applicability and correctness of
the concept but also to serve as a basis for a discus-
sion of the numerical performance. The chosen ap-
proach utilizes all object-oriented features provided by
the modelling language. Besides, it gives reason for
the present endeavours to introduce the possibility of
operator overloading within Modelica.

Keywords: motor calculus, screw theory, rigid
multibody system, Modelica, performance

1 Introduction

The motion of mechanical systems in three-dimen-
sional space has been examined for hundred of years.
In 1924 R. VON MISES suggested an approach, the so-
called motor calculus, to describe rigid body motion in
3D mechanics in a very clear and efficient way [6, 7].
Inspired by previous contributions (e.g. [2, 3, 12]), he
introduced the motor as a six-tuple of scalar quanti-
ties and developed a special algebra for these mathe-

matical objects, called the motor calculus. Though his
approach is not well known throughout all branches
of mechanical engineering, in the field of robotics
VON MISES’ ideas were rediscovered during the last
decades [1, 5, 10, 11, 13], since they seem to be well
suited to investigate the behaviour of spatial multibody
systems. However, in the context of the modelling lan-
guage Modelica (see e.g. [4, 14]), the motor calculus
has not been taken into account up to now.

Meanwhile, many researchers apply the Modelica
Multibody Standard Library ([9]) to model different
kinds of – partially very complex – multibody sys-
tems (see proceedings of the Modelica conferences
[8]). Hence, this library has proven to be a well suited
resource to modelling such systems. Nevertheless, ap-
plying the motor calculus, the equations of motion for
a rigid body become more concise and clearer, e.g.

ṗ = f

(p – momentum motor, f – force motor). Despite
the formal equivalence to Newton’s Second Law for
a point mass, this equation fully describes the three-
dimensional mechanics of a rigid body.

In our first publication [15], we were already able
to show the possible simplifications of the resulting
equations within some components of the Modelica
Multibody Standard Library using the motor calculus.
Furthermore, we compared both approaches e. g. with
respect to numerical correctness. So, the motivation to
follow further up the motor calculus in the Modelica
context is now to investigate the performance of the
simulation of mechanical systems with regard to sim-
ulation time.

An extended test realization within the Modelica
Multibody Standard Library has been carried out by
changing some components of this library. These
modifications take advantage of the built-in feature of

inheritance. Hence, it is possible to compare both ap-
proaches e. g. with respect to numerical effectiveness.

In the following section, some fundamentals of mo-
tor calculus are shortly sketched. Some of the most
important mathematical operations are defined. The
test implementation is presented in section 3. The per-
formance of the motor calculus approach will be eval-
uated and compared to the performance of the Model-
ica Multibody Standard Library using some examples
in section 4.

2 Fundamentals of motor calculus

A motor

h =
(

g
ho

)
is an ordered pair of vectors, ho and g, that define a
vector field

h(r) = ho + g × r (1)

in the three-dimensional Euclidean space. In this def-
inition, r is the position vector of any point in space,
while the vectors h and g are called the moment and
the resultant vector of the motor, respectively. Accord-
ingly, ho stands for the moment of the motor at the
origin O of the reference coordinate system.

For every motor, an infinite number of points exists,
for which the moment of the motor h is parallel to the
resultant vector g. All these points exhibit the same
moment hn and lie on a straight line N given by

rn(λ) =
g × ho

|g|2
+ λg , λ ∈ R.

Geometrical interpretation. A very strong goal of
the motor calculus is the fact that motors and all oper-
ations with motors (that will be defined later on) can
be interpreted as geometrical objects or constructions.
Hence, all motors can be seen as abstract objects that
do not depend on the choice of a reference frame. De-
tails can be found in [7, 15].

2.1 Motor calculus

In the following, some computational rules of the mo-
tor calculus are recalled.

Let h, h1, and h2 be three motors given by

h =
(

g
ho

)
, h1 =

(
g1

ho1

)
, h2 =

(
g2

ho2

)
.

Then, according to VON MISES, the following mathe-
matical operations are defined:

h1 + h2 =
(

g1 + g2

ho1 + ho2

)
(addition)

αh =
(
αg
αho

)
(multiplication with

a scalar α ∈ R)

(h1, h2) = (g1,ho2) + (g2,ho1) (inner product)

h1 × h2 =
(

g1 × g2

g1 × ho2 + ho1 × g2

)
(outer product)

In analogy to the vector calculus, VON MISES de-
clared dyads for the motor calculus by linear vector
functions mapping motors to motors. Referred to a
concrete coordinate system, such a dyad can be repre-
sented as a (6× 6) matrix.

The mapping can be described in the following man-
ner:

T ◦ h1 =
(

T 11 T 12

T 21 T 22

)
◦
(

g1

ho1

)
=
(

T 11ho1 + T 12g1

T 21ho1 + T 22g1

)
. (2)

Now, all calculation rules for the motor calculus can
be derived readily. For details we refer to [7, 15]. In
[15], it is also shown that, due to the definition of ad-
dition and scalar multiplication, motors span a vector
space over the field of real numbers. Additionally, by
the introduction of the outer product, motors form a
Lie-Algebra1.

2.1.1 Differentiation with respect to real-valued
parameters

Consider a motor h that depends on a real parameter t
(e. g. the time) with differentiable components g and
ho with respect to t. Then, the first derivative of this
motor with respect to t can be computed component-
wise:

dh

dt
=

(
dg
dt

dho
dt

)
.

2.1.2 Differentiation in moving frames

If frame F1 moves relatively to a reference frame F0,
the observed temporal change of a motor is then in
general different in the two frames. The relative mo-
tion of the origin of frame F1 measured in frame F0

1Named after the mathematician SOPHUS LIE (∗1842, †1899).

shall be given by the velocity vector vo, while the
angular velocity vector of frame F1 with respect to
frame F0 is denoted by ω. Then, the equation

ḣ =
o
h +

(
ω
vo

)
× h (3)

holds for the derivation with respect to time observed
in frame F0. In Equ. (3),

o
h denotes the derivation

w. r. t. time of the motor h observed in frame F1.

2.2 Applications of motor calculus

The most important application of motor calculus is
the description and analysis of the static and dynamic
behaviour of rigid bodies subject to external forces and
torques.

All forces and torques acting on a rigid body can be
combined to one single force vector f and one torque
vector do. Similarly, the movement of a rigid body
can be fully described by the movement of a special
reference pointO on the body (i. e. by its velocity vec-
tor vo) and the angular velocity vector ω, the body is
turning with (see Fig. 1).

P

A

ω

F

B

r0

r

r

O

O

Figure 1: Definition of vectors at the rigid body

The following paragraphs aim to show that, by in-
troducing physically motivated motors, the motor cal-
culus is well suited to describe rigid body movements.

2.2.1 Definition of physically motivated motors

Here, we introduce some motors that are able to de-
scribe the motion sequence of a rigid body as well as
the acting torques and forces in a physically meaning-
ful manner.

The first motor is called the force motor f combin-
ing the resulting force f and torque do (referred to the
reference point O) acting on the rigid body, i. e.

f =
(

f
do

)
.

Hence, the torque referred to any other point with
the position vector r is calculated by

d(r) = do + f × r .

A second motor, the so-called velocity motor, is able
to describe the whole motion of a rigid body. It con-
sists of the velocity vector vo of the chosen reference
pointO and the angular velocity vector ω representing
the rotation of the body w. r. t. an inertial frame:

v =
(

ω
vo

)
.

This motor is able to describe the velocity v of any
point r of the rigid body by the equation

v(r) = vo + ω × r .

Two other important vectors in the description of
dynamic mechanical systems are the momentum vec-
tor p and the angular momentum vector lo. Both are
combined in the momentum motor p with

p =
(

p
lo

)
.

Similar to the force motor, the representation of mo-
mentum motor depends upon the chosen reference
point. Between the angular momentum lo referred
to O and the angular momentum vector l(r) referred
to any other point at position r, the relationship

l(r) = lo + p× r

holds. The proof of this statement can be found in [15].

2.2.2 Some fundamental laws of mechanics in
terms of motor calculus

With the definitions above, a relationship between the
velocity motor v and the momentum motor p can be
derived by introducing the inertia dyad M for the mo-
tor calculus:

p =
(
mI −mRs

mRs Θo

)
︸ ︷︷ ︸

M

◦ v . (4)

The new symbol Rs describes the cross product dyad
of the vector rs pointing to the centre of mass.

With the help of the foregoing motor relations, the
main mechanical laws can be rewritten in terms of mo-
tors.

The first law describes the change of momentum
and angular momentum in the presence of external
forces and torques in a very efficient and short way,
namely

ṗ = f .

Here, ṗ denotes the time derivative of the momentum
motor p observed in an inertially fixed reference frame.

A much more applicable form for concrete calcu-
lations can be derived using (3) to express the time
derivation w. r. t. the body frame

o
p + v× p = f , (5)

where p, v, and f are referred to the origin of the body
frame.

Replacement of the momentum motor with the help
of Equ. (4) yields the following relationship

M ◦ o
v + v× (M ◦ v) = f

if all components are given in the body frame.
The kinetic energy of a rigid body can be expressed

by means of motor calculus as follows:

T =
1
2

(v, p) with p = M ◦ v .

Again, this expression agrees formally with the equa-
tion of the kinetic energy of a mass point, if therein
the mass is substituted by the inertia dyad M and the
vectors are substituted by their corresponding motors.

Similarly, the equation for the power performed by
the applied forces and torques is given by

P = (f, v) .

2.2.3 Applications to multibody systems

The use of the motor calculus introduced above can
also be very beneficial when describing multibody sys-
tems. These systems are often modelled as an inter-
connection structure of rigid bodies and ideal joints.

Exemplarily, two types of ideal joints, the revolute
and the prismatic joint, will be analysed in this paper.
Therefore, the necessary equations will be derived in
this paragraph.

Both joints set up one constraint equation on the rel-
ative motion of the rigid bodies interconnected. This
constraint can easily be expressed in terms of motor
algebra. By defining the unit vector e as the joint axis,
one can write the velocity motor of the relative motion
for the prismatic and the revolute joint as

vr = ẋeP =
(

0
ẋe

)
and vr = ẋeR =

(
ẋe
0

)
.

(6)

Here ẋ denotes the translational velocity along or the
rotational velocity around the joint axis e. The cut
forces and torques within the joint are merged in the
force motor f. Since friction is neglected, the dissi-
pated power of the joint vanishes and hence the applied
power reads

P = (f, vr) .

3 Object-oriented implementation

The test implementation presented here is based on the
Modelica Multibody Standard Library. Due to some
still existing limitations of the Modelica language in
terms of operator overloading, compromises had to be
made during implementation of the motor calculus.

3.1 Motor library

The first step of the implementation towards a descrip-
tion of rigid body motion by means of motor calculus
is the realization of a general motor class. From the
view of data structure, motors are nothing more than a
combination of six scalars.

A clear structured class motor with two vectors,
the resultant vector and the moment vector, would
have been desirable. Due to the missing possiblity of
operator overloading in our simulation tool (Dymola
7.1), an alternative implementation has been chosen.
All six scalars are stored within one vector which is
called Motor:
type Motor = Real[6]

"Motor: [Resultant;Moment at r0]";

The reason for the chosen implementation was the
ability to keep at least the operators "+" and "−" as
well as the multiplication with scalars for the motor
calculus in its original sense. One drawback is that,
within the context of inheritance, no real specializa-
tion concerning the physical units of the quantities can
be made. Hence, the child classes of velocity motor,
force motor, and momentum motor have also a quite
simple definition, namely:

type VelocityMotor= Motor "Velocity motor";
type ForceMotor = Motor "Force motor";
type MomentumMotor= Motor "Momentum motor";
type DerMomMotor = Motor "Time Derivative

of Momentum motor";

All the other calculation rules introduced in sec-
tion 2.1 had to be implemented using Modelica func-
tions.

The first function has been written to perform the
inner product between two motors. It is denoted by
dot:

function dot "Inner product of motor
calculus"

input Motor m1 "First motor";
input Motor m2 "Second motor";
output Real r3 "Resulting scalar";

algorithm
r3 := m1[1:3]*m2[4:6] + m1[4:6]*m2[1:3];

end dot;

Similarly, the outer product has been implemented us-
ing the function ’x’:

function ’x’ "Outer product of motor
calculus"

input Motor m1 "First motor";
input Motor m2 "Second motor";
output Motor m3 "Resulting motor";

algorithm
m3 := vector([cross(m1[1:3],m2[1:3]);

cross(m1[1:3],m2[4:6])
+cross(m1[4:6],m2[1:3])]);

end ’x’;

The preceding reasons for the simple implementation
of the motor class apply for the implementation of the
motor dyads, too. Hence, a motor dyad given w. r. t. a
given frame can be expressed as a (6× 6) matrix:

type MotorDyad = Real[6,6] "Motor Dyad";

To apply a motor dyad to a motor, another function has
been created. Referring to Equ. (2), the function has
been defined by:

function times "Application of a Motor Dyad
on a Motor"

input MotorDyad m1
"Motor dyad to be applied";

input Motor m2 "Input motor";
output Motor m3 "Output motor";

algorithm
m3 := m1[:,1:3]*m2[4:6]

+ m1[:,4:6]*m2[1:3];
end times;

Finally, there exist two functions that enable to trans-
form the components of a motor from one frame to
another and vice versa.

function coordChange1 "Transforms motor
from frame b to frame a"

import F = Modelica.Mechanics.MultiBody.
Frames;

input Modelica.SIunits.Position[3] r_0
"Vector pointing from origin of frame a
to origin of frame 2, resolved in
frame 1";

input F.Orientation R "Orientation object
of frame 2 resolved in frame 1";

input Motor m1 "Motor res. in frame 2";
output Motor m2 "Motor res. in frame 1";

algorithm
m2 := vector([transpose(R.T)*m1[1:3];

transpose(R.T)*m1[4:6]
+ cross(r_0,

transpose(R.T)*m1[1:3])]);
end coordChange1;

function coordChange2 "Transforms motor
from frame 1 to frame 2"
import F = Modelica.Mechanics.MultiBody.

Frames;
input Modelica.SIunits.Position[3] r_0

"Vector pointing from origin of frame a
to origin of frame 2, resolved in
frame 1";

input F.Orientation R "Orientation object
of frame 2 resolved in frame 1";

input Motor m1 "Motor res. in frame 1";
output Motor m2 "Motor res. in frame 2";

algorithm
m2 := vector([R.T*m1[1:3];

R.T*mom(m1,r_0)]);
end coordChange2;

3.2 Multibody implementation

The existing implementations of several parts of the
Modelica Multibody Standard Library were adapted
to the motor algebra. First of all, the connectors
frame_a and frame_b were changed by substitut-
ing the vectors force and torque by the force mo-
tor force in the connector class frame. Hence, all
other classes of the Multibody library used in this pa-
per had to be adjusted as well. In the following, some
important changes to the most relevant classes will be
explained in detail.

3.2.1 Changes to the body class

The first changes were the replacements of important
motion variables by some physically motivated mo-
tors. While the angular velocity vector as well as the
velocity vector of frame_a were removed, the veloc-
ity motor and the momentum motor were introduced.
Also, all acceleration vectors and all inertia dyades
have been replaced by the time derivative of the mo-
mentum motor dmom and the motor inertia dyad, re-
spectively.

// Motors
// ------
VelocityMotor velB (start=[\dots])

"Velocity motor wrt. frame a";
MomentumMotor mom (start=[\dots])

"Momentum motor wrt. frame a";
DerMomMotor dmom (start=[\dots])

"Time Derivative of Momentum motor wrt.
frame a";

ForceMotor f_g
"Force Motor due to gravitation";

// Motor Dyads
// -----------
final parameter MotorDyad I_mot =

[diagonal({m, m, m}),-skew(m*r_CM);
skew(m*r_CM), [I_11, I_21, I_31;

I_21, I_22, I_32;
I_31, I_32, I_33]

+ m*(diagonal(r_CM*r_CM*ones(3))
-[r_CM]*transpose([r_CM]))]

"Motorial Inertia Tensor";

Afterwards, all declared motors and motor dyads had
to be defined using the following statements:

// Motors
// ------
velB = vector([frame_a.R.w;

frame_a.R.T*der(frame_a.r_0)]);
mom = times(I_mot, velB);
dmom = der(mom);
f_g = vector([m*frame_a.R.T*g_0;

cross(r_CM, m*frame_a.R.T*g_0)]);

Finally, the equations of motion originally imple-
mented according to

frame_a.f = m*(Frames.resolve2(frame_a.R,
a_0 - g_0)

+ cross(z_a, r_CM)
+ cross(w_a, cross(w_a, r_CM)));

frame_a.t = I*z_a + cross(w_a, I*w_a)
+ cross(r_CM, frame_a.f);

have been replaced by Equ. (5):

frame_a.f = der(mom) + ’x’(velB,mom) - f_g;

Because of the object-oriented structure of the Mod-
elica Standard Library, the changes had to be imple-
mented only once. All subclasses of the Body class,
like BodyShape, BodyBox, or BodyCylinder
inherit the changes automatically.

3.2.2 Changes to the revolute class

Also, in the class revolute some changes had to be
carried out. Firstly,

frame_a.f = -Frames.resolve1(R_rel,
frame_b.f);

frame_a.t = -Frames.resolve1(R_rel,
frame_b.t);

had to be replaced by

frame_a.f = -coordChange1(zeros(3),R_rel,
frame_b.f);

and

frame_b.f = -Frames.resolve1(R_rel,
frame_a.f);

frame_b.t = -Frames.resolve1(R_rel,
frame_a.t);

was substituted by

frame_b.f = -coordChange1(zeros(3),R_rel,
frame_a.f);

Last of all, the constraint equation was reformulated
according to (6) as

tau=-dot(frame_b.f,vector([e;zeros(3)]));

3.2.3 Changes to the prismatic class

In the class prismatic the following lines

zeros(3) = frame_a.f + frame_b.f;
zeros(3) = frame_a.t + frame_b.t

+ cross(e*(s_offset + s), frame_b.f);
// d’Alemberts principle
f = -e*frame_b.f;

were replaced by the two lines

zeros(6) = frame_a.f
+ coordChange1(e*(s_offset + s),
Frames.nullRotation(),frame_b.f);

// d’Alemberts principle
f = -dot(frame_b.f,vector([zeros(3);e]));

4 Examples and performance analy-
sis

On the basis of the following examples, different per-
formance tests were carried out in order to evaluate the
numerical effectiveness of the two different modelling
approaches. Two of the examples can also be found in
[15] where the authors already showed the applicabil-
ity and correctness of some of the implementations.

The following first three subsections describe the
chosen examples and show some simulation results.
The last subsection introduces a performance criterion
and evaluates the performance of the simulations.

4.1 Movable double pendulum

As a first example, the movable double pendulum
(Fig. 2) was chosen to compare the simulation time
of the implemented body classes based on motor cal-
culus to the implementation of the Modelica Standard

ts

M0

M1

M2

x

y

s

trolley
ϕ1

ϕ2

J1

J2

g

centre of mass
of body 2

Figure 2: Sketch of double pendulum

Library. The pendulum consists of a trolley with the
mass M0 and two rigid bodies with masses M1 and
M2. The trolley is able to move horizontally. The first
body is suspended on the trolley by a revolute joint.
The second body is suspended on the first body via a
revolute joint, too. Both axes of rotation are parallel
to the z-axis which lies perpendicular to the xy-plane
(see Fig. 2). The moments of inertia of both bodies
around the axis of rotation w. r. t. their particular centre
of mass are given by J1 and J2. The distance between
both axis of rotations is denoted by l1.

The pendulum moves from an initial deflection of
ϕ1(0) = 90 deg and ϕ2(0) = 0 deg due to the earth’s
gravity field. A viscous friction, acting in every joint,
damps the motion of the pendulum.

As a reference, the same pendulum system has been
implemented using the Modelica Standard Library. In
Fig. 3, the trajectory for the position s of the trolley for
both simulations is displayed. Both curves are nearly
congruent. Hence, Fig. 3 shows only one curved line.

Figure 3: Trajectory of the trolley position s

The time histories of the revolute joint angles ϕ1

and ϕ2 are depicted in Fig. 4. The differences be-

Figure 4: Trajectory of the pendulum angles ϕ1 and
ϕ2

tween both simulation results for an integration toler-
ance of 10−4 are shown in Fig. 5. Apparently, the de-
viation of the position stays smaller than 6 · 10−12m
for the given simulation time of 10s. The deviations
of both pendulum angles are also very small. They do
not exceed 10−11rad. Hence, these differences can be
interpreted as numerical errors of the simulator, since
they depend on the integration tolerance.

Figure 5: Deviations between both simulations for
trolley position s and both angles ϕ1 and ϕ2

4.2 Fourfold pendulum on two movable slid-
ers

The second example is a fourfold pendulum. It con-
sists of two trolleys and a chain of four rigid bodies
between them. Both trolleys are guided along straight
tracks (see Fig. 6). Hence, this example contains a
closed kinematic loop. Similar to the foregoing exam-
ple, the pendulum moves due to the gravity field of
the earth. The motion starts with an initial deflection
(see Fig. 7) and is damped by a viscous friction in ev-

M0

M1

M2

M3

M4

M5

x

y
s1

s2

ϕ1

ϕ2

ϕ3

ϕ4

J1

J2

J3

J4

g

Figure 6: Sketch of fourfold pendulum

ery joint except the last one connecting the bodies with
masses M4 and M5. The initial values for the pendu-
lum angles are

ϕ1(0) = 45 deg, ϕ2(0) = −15 deg,

ϕ3(0) = 30 deg, ϕ4(0) = −37.5 deg.

Fig. 7 shows the initial configuration of the pendulum
system. Here, the length proportions between the four
bodies of the pendulum are illustrated.

Figure 7: Start configuration of fourfold pendulum

Like before, the pendulum system was implemented
twice using two different simulation models. The first
implementation is based on the Multibody Standard
Library and serves as a reference. The second model
uses the modified Multibody Library on the basis of
the motor algebra.

In order to compare both approaches concerning
their simulation results, one instance of the first model
and one instance of the second model were calculated

simultaneously. This way, the deviations of both simu-
lations can be calculated. For reasons of compactness
only the maximum deviation for all prismatic joints
and for all revolute joints are plotted in Fig. 8. They
have the same order of magnitude as in the example
before and can thus be explained by numerical errors.

Figure 8: Maximal deviations between both simula-
tions for all prismatic joints and all revolute joints

4.3 Rotating wheel on a movable axis

The last example is a rotating wheel that is fixed on
a movable axis (see Fig. 9). There are three revolute
joints within this mechanism. The first one allows a
rotation of the rack (the long cylinder posing upright in
Fig. 9) around the z-direction. A second revolute joint
is the bearing of the wheel that enables the wheel to
turn around its axis. Between them, there is a revolute
joint enabling a rotation of the axis orthogonal to the
rotation of the spinning wheel. Hence, in this example,
the rigid bodies do not only perform planar motions.

Figure 9: Sketches of a rotating wheel on movable axis

Again, the bodies move under the influence of the
earth’s gravitational field that acts in the negative z-
direction.

At the beginning, the wheel turns with a speed of
ω3 = 50 rad/s around its axis while the rack and the
wheel’s axes stand perpendicular to each other. In op-
posit to the foregoing examples, this system is com-
pletely undamped. Fig. 10 depicts the trajectory of the
intersection point between the wheel axis and a unit
sphere. Obviously, the resulting motion of the mech-

Figure 10: Trajectory of the intersection point between
the rotation axis and a unit sphere for ω3 = 50 rad/s

anism is a superposition of a precession and a free nu-
tation. In order to illustrate this characteristic motion
in more detail, Fig. 11 shows the same trajectory for
an initial speed of only 10 rad/s.

Figure 11: Trajectory of the intersection point between
the rotation axis and a unit sphere for ω3 = 10 rad/s

As in the paragraphs before, the example was imple-
mented twice to compare Modelica Standard imple-
mentation with modified motor implementation. The

deviations for all revolute joint angles between both
implementations do not exceed 6 · 10−12 for a simu-
lation time of 10s. However, since the system is un-
damped, the deviations of both simulations increase
with continuing time.

4.4 Performance analysis

All simulation tests were performed using the simula-
tion tool Dymola in the version 7.1. The analysis of the
performance requires the definition of a performance
indicator. Even though Dymola provides a lot of in-
formation on the translation as well as the simulation
process, we decided to evaluate the performance by the
simulation time, since this might be the most interest-
ing indicator for many users. For all simulations, we
used a PC running the operating system Windows XP
Professional. All simulations has been carried out ten
times for each model while no other application was
running on the system. A comparison of the average
values of the simulation time for these implementa-
tions can be seen in Fig. 12.

Figure 12: Simulation time of all examples for both
implementations

Hence, the performance analysis on the chosen sim-
ulation system revealed that the modified multibody
library on the basis of the motor algebra shows a per-
formance which is inferior compared to the one of the
Modelica Standard Library. According to the transla-
tion information of Dymola the reason might be that
Dymola was not able to reduce and simplify the sys-
tem equations of the motor implementation as much as
the equations of the Modelica Standard Library. That
seems reasonable due to the broad use of functions
and vectorised quantities within the motor implemen-

tation. Indicated by this insight, further investigations
with different simulation tools seem to be necessary
for the future to get results which are clearer and bet-
ter comparable.

5 Summary and outlook

The paper shows an alternative approach to modelling
spatial multibody systems in Modelica. This approach
is characterized by a clear and concise formulation of
the equations of motion.

To get some experiences in terms of numerical ef-
ficiency and limits of this approach, an extended test
implementation was carried out. Appropriate modifi-
cations of the Modelica Multibody Standard Library
enabled us to compare the Standard Library imple-
mentation and the motor calculus implementation with
regard to simulation time.

The results presented here were determined using
the Modelica simulator Dymola. These results seem to
encourage the idea of testing the motor calculus within
other Modelica simulator tools, too.

References

[1] J. Angeles. Fundamentals of Robotic Me-
chanical Systems.. Second Edition. NewYork,
Springer-Verlag, 2003.

[2] R.S. Ball. A Treatise on the Theory of Skrews.
Cambridge University Press, 1900.

[3] W.K. Clifford. Preliminary sketch of bi-
quaternions. Proc. London Math. Soc., 4:381–
395, 1873.

[4] P. Fritzson. Principles of Object-Oriented Mod-
eling and Simulation with Modelica 2.1. Wiley-
IEEE Press, 2003.

[5] C. Heinz. Motorrechnung imX1+3+3. Zeitschrift
für Angewandte Mathematik und Mechanik
(ZAMM), 67(11):537–544, 1987.

[6] R. von Mises. Motorrechnung, ein neues Hilfs-
mittel der Mechanik. Zeitschrift für Angewandte
Mathematik und Mechanik (ZAMM), 4(2):155–
181, 1924.

[7] R. von Mises. Anwendungen der Motorrech-
nung. Zeitschrift für Angewandte Mathematik
und Mechanik (ZAMM), 4(3):193–213, 1924.

[8] http://www.modelica.org/events.
seen on August 10th, 2009.

[9] M. Otter, H. Elmqvist, and S. E. Mattsson. The
New Modelica MultiBody Library. In 3rd Inter-
national Modelica Conference, Linköping, Swe-
den, November 3–4, 2003, Proc., pages 311–330.
The Modelica Association, 2003.

[10] B. Roth. Screws, motors, and wrenches that can-
not be bought in a hardware store. In M. Brady
and R. Paul (eds.): The First Internal Sympo-
sium on Robotic Research., MIT Press, Cam-
bridge (MA), pp. 679–693,.

[11] K. Sugimoto. Kinematic and Dynamic Analy-
sis of Parallel Manipulators by Means of Motor
Algebra. Journal of mechanisms, transmissions,
and automation in design, vol. 109(1), pp 3–7,
1987.

[12] E. Study. Geometrie von Dynamen. Die Zusam-
mensetzung von Kräften und verwandte Gegen-
stände der Geometrie. Teubner, Leipzig, 1903,

[13] H. Stumpf and J. Badur. On the non-abelian mo-
tor calculus. Zeitschrift für Angewandte Mathe-
matik und Mechanik (ZAMM), 70(12):551–555,
1990.

[14] M.M. Tiller. Introduction to Physical Modeling
with Modelica. Springer, 2001.

[15] T. Zaiczek, O. Enge-Rosenblatt. Towards an
Object-oriented Implementation of VON MISES’
Motor Calculus Using Modelica. In 2nd Inter-
national Workshop on Equation-Based Object-
Oriented Languages and Tools, Paphos, Cyprus,
July 3, 2008, Proc., pages 131–140.

