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Abstract 

This paper outlines the development and implemen-
tation of a vehicle model architecture for hybrid ve-
hicle modeling.  The architecture is based on the Ve-
hicleInterfaces library with significant extensions to 
enable more flexible, configurable implementations 
for hybrid vehicle applications.  Additional elements 
are added to the interfaces and architecture to allow 
more flexible electrical system modeling and more 
detailed thermal modeling.  Four different hybrid 
vehicles are implemented as sample applications us-
ing the newly-developed architecture.  The scheme 
and canonical library structure for the component, 
subsystem, and system models is also discussed to 
document a mechanism for user-friendly handling of 
parameterized models and fully-implemented models 
in a complex model architecture with extensive 
model data.  Models and simulation results are 
shown for the Toyota Prius, Lexus RX400h, a con-
cept hybrid sedan, and a concept hybrid sport utility 
vehicle (SUV).  Extensions to VehicleInterfaces are 
also proposed to enhance the library to include addi-
tional features to improve support for future conven-
tional and hybrid vehicle modeling efforts. 

Keywords: hybrid vehicles; vehicle modeling; model 
architecture; VehicleInterfaces 

1 Introduction 

Since the introduction of the Toyota Prius in the U.S. 
in 2000, hybrid vehicles have been gradually gaining 
acceptance in the U.S. as more consumers become 
aware of fuel economy and the effect of atmospheric 
CO2 on climate change.  While existing tax credits 
and government incentives have provided some sti-
mulus for hybrid vehicle purchases, the overall share 
of hybrid vehicles in the light duty segment is still 
less than 2% as shown in Figure 1.  However, hybrid 
vehicle share is expected to increase substantially 
over the next 10 years as more manufacturers intro-

duce hybridized vehicles.  The share of hybrid ve-
hicles is projected to reach nearly 9% in 2015 as 
shown in Figure 1. 

 
Figure 1. Projected US hybrid vehicle sales 

 

Given the accelerated introduction of hybrid vehicle 
models over the next several years, there is an in-
creasing need to develop analytic tools to reduce de-
velopment time for these vehicles which are signifi-
cantly more complex than conventional vehicles.  
These analytic tools can be used to assess the impact 
of different hybrid architectures, size/design the 
components, perform tradeoff and robustness stu-
dies, provide component specifications based on ve-
hicle targets, and develop/optimize the control strat-
egy and subsequent calibration to balance vehicle 
attributes. 

 

Modelica has been used extensively for vehicle sys-
tem modeling [2]-[6].  With a growing list of com-
mercial, free, and internally-developed OEM pro-
prietary model libraries, the need for a unifying ve-
hicle model architecture was quickly realized.  The 
purpose of a standardized model architecture is to 
provide consistent interfaces and system decomposi-
tion to promote plug-n-play interoperability between 
libraries.  The first vehicle modeling architecture in 
Modelica was VMA [7].  Released in 2003, VMA 
was based on a Ford-internal architecture.  After ad-
ditional feedback from library vendors and end users, 
VMA was subsequently modified and released as the 
VehicleInterfaces library in 2006 [8].  The objective 
of VehicleInterfaces is to provide an open architec-



ture to support configurable modeling of both con-
ventional and hybrid vehicles.  The library has been 
used as the starting point for several vehicle model-
ing applications [6] and is still under development.   

 

This paper outlines the development and implemen-
tation of an extended vehicle model architecture 
based on VehicleInterfaces with additional en-
hancements to better support hybrid vehicle model-
ing.  Extensions have been made to the interfaces 
and additional components added to the architecture 
to enable more flexible, configurable implementa-
tions for hybrid vehicle applications.   Four different 
hybrid vehicles, namely the Toyota Prius, Lexus 
RX400h, a concept hybrid sedan and SUV, are im-
plemented as sample applications using the newly-
developed architecture.  Sample drive cycle simula-
tions are shown for the four vehicles.  The scheme 
and canonical library structure for the component, 
subsystem, and system models is also discussed to 
document a mechanism for user-friendly handling of 
parameterized models and fully-implemented models 
in a complex model architecture with extensive 
model data.  Finally, extensions to VehicleInterfaces 
are proposed to enhance the library for future con-
ventional and hybrid vehicle modeling efforts.    

2 Architecture Development 

2.1 VehicleInterfaces Examples 

The VehicleInterfaces library includes example 
model architectures for many different types of ve-
hicles, including conventional and hybrid vehicles.  
Example architectures from VehicleInterfaces 1.1 are 
shown in Figure 2 for a conventional (a), PowerSplit 
hybrid (b), and series hybrid (c) vehicle.    
 
While the conventional vehicle architecture seems 
quite suitable, the two hybrid vehicle architectures 
do not appear to offer a similar system decomposi-
tion to enable modeling flexibility at the system lev-
el.  In particular, these example hybrid architectures 
do not appear to implement a formal electrical sub-
system nor are the elements of the hybrid drivetrain 
grouped at the subsystem level.  These features are 
required to support plug-n-play modeling at the sys-
tem level with model components of varying level of 
detail.  It should be noted that the hybrid vehicle ar-
chitectures are appropriate for some model imple-
mentations but simply may not provide enough flex-
ibility for models of varying level of detail with mi-
nimal changes to the top-level architecture. 

 
(a) Conventional vehicle 

 
(b) PowerSplit hybrid 

 
(c) Series hybrid 

Figure 2.  Example architectures for conventional and 
hybrid vehicles from the VehicleInterfaces library 

2.2 New Architecture 

Given the observations noted in the previous section 
regarding the example architectures in Vehicle Inter-
faces 1.1, a new architecture was developed based on 
the following design criteria: 

• Extension from VehicleInterfaces design to 
maximize compatibility with existing model 
libraries 

• Single model architecture that supports both 
conventional and hybrid vehicle models 

• Additional support for electrical and thermal 
systems 

 



To meet the design criteria above, the extended ve-
hicle architecture shown in Figure 3 was developed.  
There are several interface models from the Vehic-
leInterfaces library which required little or no mod-
ification.  These models include the driver, world, 
road, and atmosphere components. The remaining 
interfaces are either modified or newly-added and 
will be discussed in detail next.  
 

 
Figure 3.  Model architecture 

 
To support the proliferation of electrical components 
throughout modern vehicle subsystems, an electrical 
bus connector was added to the accessories, power-
plant, transmission, driveline, chassis, and brakes 
subsystems.  The electrical bus is an expandable 
connector that supports both single and multivoltage 
representations of the vehicle electrical system.  Note 
that it is not required to terminate the electrical con-
nection in component implementations which do not 
interact with the electrical system.  As a result, no 
special provisions must be made for handling elec-
trical connections in subsystem models that do not 
interact with the electrical bus. 
 
In an effort to formalize the electrical subsystem, a 
new component is added for the electrical power 
network.  The electrical power network is meant to 
represent the source of electrical power for the ve-
hicle.  Implementations of this subsystem could in-
clude a single battery, multiple batteries, power con-
verters, and other components that provide and trans-
form electrical power for use by the other subsys-
tems. 
 
A thermal bus was added to several components in 
the architecture.  The thermal bus is also imple-
mented as an expandable connector.  The thermal 
bus was added to the electrical power network and 
accessory subsystems to facilitate modeling of the 
HVAC system for both vehicle and electrical system 

cooling.  It should be noted that the thermal bus 
could also be added to the other vehicle subsystems 
to support thermal modeling of the engine, transmis-
sion, driveline, chassis, and brakes as shown in Sec-
tion 6.  A new cabin component was added to sup-
port thermal modeling of the cabin environment.  A 
new thermal network component was added to pro-
vide the thermal linkages between the various inte-
racting thermal components.  These linkages could 
include cooling provided from the HVAC compo-
nents in the accessories to the electrical power net-
work and cabin components, thermal pathways be-
tween the electrical power network and the cabin, 
and thermal linkages between the vehicle and   ex-
ternal environment.  The addition of the thermal 
network component provides additional flexibility to 
modify the thermal routing between components 
without requiring modification of the models that 
implement the thermal capacitances.  
 
The design of the electrical and thermal networks 
decouples the mechanical, electrical and thermal ar-
chitectures.  In this way, the electrical power and 
thermal network subsystem models allow complete 
different architectures for those subsystems to be 
implemented in a way that is orthogonal to the me-
chanical architecture. 
 
With the ability to internally ground the reaction tor-
ques in the various component models in the Mod-
elica Standard library, the impact of the various 
models on the powertrain mounts is often easily 
overlooked. Thus, powertrain mounts were also add-
ed to the vehicle architecture to encourage considera-
tion of the impact of the drivetrain on the mounting 
system.   
 
To support modeling of the vehicle control strategy, 
a controller network component was added to the 
vehicle architecture.  The controller network can 
support both a single and distributed controller archi-
tecture as shown in the interfaces in Figure 4. Note 
the vehicle system controller which interacts with the 
driver interface and component controllers.  Sample 
component controllers are engine, transmission, bat-
tery, driveline, climate control, motor, generator, etc. 
depending on the vehicle architecture.  The function-
al form of these controllers is flexible enough that 
they can be mapped to hardware control units if de-
sired.  The controller network interface is flexible 
and configurable to allow the addition of other con-
trollers, implementation of controllers of varying 
levels of detail, and controller implementations na-
tively in Modelica along with external implementa-
tions such as C code and Simulink. 



 
Figure 4.  Distributed controller network interfaces  

3 Canonical Library Structure 

Despite the formal Modelica language features for 
model configuration, managing model variants and 
parameter data is a challenge in complex, hierarchic-
al models.  The challenge exists not only for the ini-
tial library developer but also subsequent model de-
velopers and end users.  This section describes a ca-
nonical library structure implemented as part of the 
vehicle architecture and implementation effort.  This 
structure was implemented in an effort to satisfy the 
needs of the model developer while balancing usabil-
ity concerns for the end user.  The guiding principles 
behind this structure are as follows: 

• Promote object-oriented modeling of plant 
and controller subsystems by composition 
from reusable, parameterized components 

• Provide a model package structure consistent 
with the model architecture and within 
which it is easy to find existing models and 
place new models 

• Parameterize models at all levels (subsys-
tem, component, and primitive) to promote 
model reuse 

• Clearly separate generic, parameterized 
models from specific model implementations  

• Implement a data model that preserves the 
integrity of parameter data throughout the 
model life cycle 

 
The key design element of the canonical library 
structure is the separation and clear distinction be-
tween parameterized models and model implementa-
tions.  Parameterized models include all relevant eq-

uations for simulation but do not specify any design 
parameter values.  Model implementations extend 
from the parameterized models and provide the pa-
rameter design values.  In this structure, explicit 
model implementations exist as named, fully-
specified entities in the package hierarchy rather than 
ad hoc implementations created by specifying para-
meter values at instantiation.  The advantages of 
named model implementations are as follows: 

• No need for separate data package hierarchy 
as parameter data is specified directly in 
model implementations 

• Implemented models clearly separated for 
model users 

• Fully specified implementations consistently 
used in architecture, component tests, etc. 
without requiring any additional data to be 
provided by user 

• Parameterization clearly identified as a task 
at creation of implementation model and not 
model instantiation 

• Integrity of parameter data in model imple-
mentations can be maintained based on de-
sign choices initiated by model developer 

• Implementations offer true plug-n-play ca-
pability in architecture without requiring 
subsequent modifications, thus integrating 
nicely with the replaceable concept in Mod-
elica and tool implementations including 
multiple redeclares 

 
The following figures show a sample implementation 
of the canonical library structure.  Figure 5 shows the 
top level package structure which contains the inter-
faces package and the packages for the paramete-
rized models.  These packages can include additional 
subpackages to further classify the parameterized 
models.  Note that these packages do not contain any 
implementations.  Figure 6 shows the vehicle im-
plementations package with implementations for the 
Prius and Lexus RX400h.  An exploded view of the 
Prius implementation package is shown in Figure 7. 
 

 
Figure 5. Top level package structure 



 

 
Figure 6. Vehicle implementations package structure 

for Toyota Prius and Lexus RX400h 

 

 
Figure 7. Toyota Prius implementation 

 
To support this library structure, two different types 
of parameterization are defined: parameterized mod-
el and configurable models.  The characteristics of a 
parameterized model are defined as follows: 

• Parameters declared in public section of 
Modelica model 

• Can include instantiation of non-replaceable 
models 

• Model can be instantiated 
• Parameter values provided at instantiation 

and parameters can be propagated to higher 
level model 

• Parameter values can be modified by higher 
level component 

• Parameter values can be modified after com-
pilation 

 
The characteristics of a configurable model are as 
follows: 

• Parameters declared in protected section of 
Modelica model 

• Can include instantiation of replaceable 
components 

• Model denoted as “partial” to indicate that it 
is not complete and can only be instantiated 
as a replaceable component in another model 

• Explicit model implementations which are 
stored in the package hierarchy are required 

• Model implementations are created by ex-
tending from the configurable model,  pro-
viding parameter data, and selecting imple-
mentations for other configurable models 

• Model implementations can be used directly 
in other models or tests 

• Parameter values cannot be modified by 
higher level components at instantiation 

• Parameter values can be modified after com-
pilation 

 
Ultimately, the type of parameterization used is de-
fined by the model developer when the model is 
created.  Some factors to be considered are the com-
plexity of the parameter data, desired integrity of the 
parameter data, and the anticipated usage of the 
model.  It should be noted that virtually all the mod-
els in the Modelica Standard Library are paramete-
rized models according to the characteristics above.  
Figure 8 shows a sample configurable transmission 
subsystem model.  This model is comprised of two 
replaceable configurable models for the tor-
que_converter and gearbox components and 
one parameterized model for the inertia component. 
 

 
Figure 8. Sample configurable model 



4 Hybrid Vehicle Implementations 

Using the newly developed architecture, four sample 
vehicle implementations were created.  The imple-
mented models include the Toyota Prius, Lexus 
RX400h, and concept versions of a hybrid sedan and 
SUV.  While the vehicle model architecture obvious-
ly supports models of varying level of detail and a 
wide range of engineering analyses, these implemen-
tations were focused on drive cycle simulations for 
fuel economy.  The parameterization data for these 
models was collected from available publications in 
the open literature and from the last publicly-
available version of ADVISOR [9].   

 
The vehicle model implementations include the fol-
lowing subsystem representations: 

• Accessories including performance-oriented 
model of vehicle air-conditioning system 

• Mapped engine model 
• Various implementations of conventional 

and hybrid transmissions with motors, gear 
seats, clutches, etc. 

• Rigid front wheel drive (FWD) drivelines 
• Vehicle chassis with lumped vehicle inertia, 

no-slip tires, and loads for aerodynamic drag 
and rolling resistance 

• Simple brakes with prescribed actuation 
• Dual voltage electrical power networks with 

fixed capacity battery models including bat-
tery thermal response 

• Thermal networks including routing for bat-
tery and cabin cooling 

• Lumped cabin models for vehicle cooling 
• Controller network implementations includ-

ing vehicle system, engine, transmission, 
battery, motor, generator, climate, and brake 
controllers 

• Driver models based on drive cycles  with 
capability to run both forward and backward 
models 

 
The acausal nature of the Modelica modeling lan-
guage enables several nice features of the model ar-
chitecture: 

• Ability to run both forward and backward 
drive cycle simulations with change only to 
the driver model (assuming underlying mod-
el is invertible) 

• Ability to use model inversion to implement 
control features 

• Ability to re-use physical, validated models 
across subsystems and applications 

• Ability to plug-n-play models of varying 
level of detail to enable a wide range of en-
gineering analyses to support model-based 
engineering over the entire product devel-
opment process 

4.1 Toyota Prius 

The vehicle model implementation for the parallel 
hybrid Toyota Prius is shown in Figure 9.  The im-
plementation of the transmission subsystem for the 
PowerSplit transmission contains the motor, genera-
tor, and gearing components consistent with the hy-
brid transmission delineation in the Toyota drivetrain 
schematic [10]  shown in Figure 10. 

 

 
Figure 9. Toyota Prius model 

 

 
Figure 10. Toyota Prius drivetrain schematic [10]   

4.2 Lexus RX400h 

The vehicle model implementation for the Lexus 
RX400h is shown in Figure 11.  Like the Toyota 
Prius, the Lexus RX400h is a parallel hybrid vehicle 
with a PowerSplit transmission.  The drivetrain 
schematic in Figure 10 is applicable to the Lexus 
RX400h as well. 



 
Figure 11.  Lexus RX400h model 

4.3 Concept Hybrid Sedan 

The vehicle model implementation for a concept hy-
brid sedan with a parallel hybrid architecture is 
shown in Figure 12. 
 

 
Figure 12. Concept hybrid sedan model 

4.4 Concept Hybrid SUV 

The vehicle model implementation for a concept hy-
brid SUV with a parallel architecture is shown in 
Figure 13. 
 

 
Figure 13. Concept hybrid SUV model 

5 Drive Cycle Simulations 

Sample drive cycle results from the four vehicle im-
plementations are shown in this section.  Fuel con-
sumption data in L/100km is shown in Figure 14 for 
the four vehicles.  The drive cycle is a proprietary 
cycle developed based on real-world driving over a 
range of conditions of interest to hybrid vehicle de-
velopment.   

 

 
(a) Toyota Prius 

 
(b) Lexus RX400h 

(c) Concept hybrid sedan 

 
(d) Concept hybrid SUV 

Figure 14.  Fuel economy simulations 

 
While every attempt was made to incorporate actual 
vehicle parameter data into the simulations, certain 
key parameters and component specifications were 
not available and thus were implemented based on 
the authors’ best engineering judgment or based on 
appropriate scaling from existing data.  In addition, 
drive cycle fuel consumption is highly dependent on 
the implementation and calibration of the vehicle 
control strategy.  While control strategies were im-



plemented for all four vehicles, these strategies may 
not be representative of the actual, proprietary con-
trol strategies for the production vehicles.  Thus, the 
fuel economy results should be viewed as representa-
tive only.  Furthermore, it should be noted that there 
is no experimental data with which to compare the 
model as these vehicles either do not exist yet in 
hardware or were not actually driven over this drive 
cycle.  However, the results appear reasonable and 
follow the expected trends.   

 
Figure 15 shows some additional signals from the 
Prius drive cycle simulations.  The top graph shows 
the speeds of the engine, motor, and generator during 
the drive cycle.  The bottom graph shows the state of 
charge (SOC) in the high voltage battery.  The result-
ing battery dynamics include the contributions of the 
vehicle system and battery control characteristics and 
charge/discharge due to driving requirements and 
regenerative braking.   

 

 
(a) Device speeds 

 
(b) Battery state of charge 

Figure 15.  Prius drive cycle results: device speeds and 
battery state of charge 

6 Extensions to VehicleInterfaces 

The VehicleInterfaces library [8] provides a solid 
architecture to support vehicle system modeling. The 
library offers substantial flexibility in modeling the 
mechanical (both 1D and 3D) and control system 
interactions in the vehicle. Based on the extensions 
to the library implemented as part of this work, this 

section proposes additions to VehicleInterfaces to 
enable improved support for future vehicle modeling 
efforts.   

6.1 Electrical Modeling 

Electrification of nearly all major vehicle subsystems 
in both conventional and hybrid vehicles necessitates 
system leveling modeling of electrical systems.  Cur-
rently VehicleInterfaces does not include electrical 
connectors and interactions at the subsystem level.  
The following extensions to VehicleInterfaces would 
improve the library’s ability to support vehicle mod-
eling including electrical system effects: 

• Addition of expandable electrical bus to all 
major vehicle physical subsystems as shown 
in Figure 16 

• Addition of electrical power network subsys-
tem to serve as architecture placeholder for 
electrical energy sources, converters, etc. 
which distribute electrical power via the ex-
pandable electrical bus to other vehicle sub-
systems 

 
These extensions eliminate the need to extend the 
existing interfaces in VehicleInterfaces simply to add 
an electrical bus.  In addition, the formal inclusion of 
an electrical system will natively allow modeling of 
hybrid vehicle architectures in a standardized archi-
tecture as shown in Figure 16 without having to add 
electrical components in an ad hoc way to the top-
level architecture. 

6.2 Thermal Modeling 

System level thermal modeling is another key ele-
ment of vehicle system modeling.  Currently Vehic-
leInterfaces does not include thermal interactions at 
the subsystem level.  The extended vehicle model 
architecture shown in Figure 3 includes the addition 
of an expandable thermal bus to a few top level sub-
system components.  As mentioned in Section 2.2, 
the most flexible implementation would include the 
addition of the thermal bus to all major vehicle sub-
systems as shown in Figure 16.  Including an ex-
pandable thermal bus eliminates the need to extend 
the existing interfaces in VehicleInterfaces simply to 
accommodate thermal modeling.  The thermal net-
work and cabin subsystems are an integral part of the 
thermal architecture for the simulations shown in 
Section 5 but could be omitted from a standard archi-
tecture in an effort to minimize top level subsystems.  

 



 
Figure 16.  Sample extended architecture 

7 Conclusions 

This paper documents the development and imple-
mentation of an extended vehicle model architecture 
for hybrid vehicle modeling.  This architecture is 
based on VehicleInterfaces and more easily enables 
flexible, configurable modeling of different hybrid 
vehicle configurations without the need for several 
different architectures.  Additional elements have 
been added to the interfaces and architecture to allow 
more flexible electrical system modeling and more 
detailed thermal modeling.  To illustrate the usage of 
this architecture, four different hybrid vehicles have 
been implemented and sample drive cycle simula-
tions results shown.  The canonical library structure 
implemented in this work has proven very capable of 
handling model development and implementation of 
model variants in a user-friendly way that integrates 
well with the formal model configuration language 
elements in Modelica.  The canonical library struc-
ture has been discussed in detail along with a sample 
package implementation for the vehicle implementa-
tions shown in this work.  Extensions to VehicleIn-
terfaces have been proposed to improve the library 
for future vehicle modeling efforts. 
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