
Implementation of an Extended Vehicle Model Architecture in
Modelica for Hybrid Vehicle Modeling: Development and Applications

John Batteh Michael Tiller
Emmeskay, Inc.

Plymouth, Michigan USA
jbatteh@emmeskay.com mtiller@emmeskay.com

Abstract

This paper outlines the development and implemen-
tation of a vehicle model architecture for hybrid ve-
hicle modeling. The architecture is based on the Ve-
hicleInterfaces library with significant extensions to
enable more flexible, configurable implementations
for hybrid vehicle applications. Additional elements
are added to the interfaces and architecture to allow
more flexible electrical system modeling and more
detailed thermal modeling. Four different hybrid
vehicles are implemented as sample applications us-
ing the newly-developed architecture. The scheme
and canonical library structure for the component,
subsystem, and system models is also discussed to
document a mechanism for user-friendly handling of
parameterized models and fully-implemented models
in a complex model architecture with extensive
model data. Models and simulation results are
shown for the Toyota Prius, Lexus RX400h, a con-
cept hybrid sedan, and a concept hybrid sport utility
vehicle (SUV). Extensions to VehicleInterfaces are
also proposed to enhance the library to include addi-
tional features to improve support for future conven-
tional and hybrid vehicle modeling efforts.

Keywords: hybrid vehicles; vehicle modeling; model
architecture; VehicleInterfaces

1 Introduction

Since the introduction of the Toyota Prius in the U.S.
in 2000, hybrid vehicles have been gradually gaining
acceptance in the U.S. as more consumers become
aware of fuel economy and the effect of atmospheric
CO2 on climate change. While existing tax credits
and government incentives have provided some sti-
mulus for hybrid vehicle purchases, the overall share
of hybrid vehicles in the light duty segment is still
less than 2% as shown in Figure 1. However, hybrid
vehicle share is expected to increase substantially
over the next 10 years as more manufacturers intro-

duce hybridized vehicles. The share of hybrid ve-
hicles is projected to reach nearly 9% in 2015 as
shown in Figure 1.

Figure 1. Projected US hybrid vehicle sales

Given the accelerated introduction of hybrid vehicle
models over the next several years, there is an in-
creasing need to develop analytic tools to reduce de-
velopment time for these vehicles which are signifi-
cantly more complex than conventional vehicles.
These analytic tools can be used to assess the impact
of different hybrid architectures, size/design the
components, perform tradeoff and robustness stu-
dies, provide component specifications based on ve-
hicle targets, and develop/optimize the control strat-
egy and subsequent calibration to balance vehicle
attributes.

Modelica has been used extensively for vehicle sys-
tem modeling [2]-[6]. With a growing list of com-
mercial, free, and internally-developed OEM pro-
prietary model libraries, the need for a unifying ve-
hicle model architecture was quickly realized. The
purpose of a standardized model architecture is to
provide consistent interfaces and system decomposi-
tion to promote plug-n-play interoperability between
libraries. The first vehicle modeling architecture in
Modelica was VMA [7]. Released in 2003, VMA
was based on a Ford-internal architecture. After ad-
ditional feedback from library vendors and end users,
VMA was subsequently modified and released as the
VehicleInterfaces library in 2006 [8]. The objective
of VehicleInterfaces is to provide an open architec-

ture to support configurable modeling of both con-
ventional and hybrid vehicles. The library has been
used as the starting point for several vehicle model-
ing applications [6] and is still under development.

This paper outlines the development and implemen-
tation of an extended vehicle model architecture
based on VehicleInterfaces with additional en-
hancements to better support hybrid vehicle model-
ing. Extensions have been made to the interfaces
and additional components added to the architecture
to enable more flexible, configurable implementa-
tions for hybrid vehicle applications. Four different
hybrid vehicles, namely the Toyota Prius, Lexus
RX400h, a concept hybrid sedan and SUV, are im-
plemented as sample applications using the newly-
developed architecture. Sample drive cycle simula-
tions are shown for the four vehicles. The scheme
and canonical library structure for the component,
subsystem, and system models is also discussed to
document a mechanism for user-friendly handling of
parameterized models and fully-implemented models
in a complex model architecture with extensive
model data. Finally, extensions to VehicleInterfaces
are proposed to enhance the library for future con-
ventional and hybrid vehicle modeling efforts.

2 Architecture Development

2.1 VehicleInterfaces Examples

The VehicleInterfaces library includes example
model architectures for many different types of ve-
hicles, including conventional and hybrid vehicles.
Example architectures from VehicleInterfaces 1.1 are
shown in Figure 2 for a conventional (a), PowerSplit
hybrid (b), and series hybrid (c) vehicle.

While the conventional vehicle architecture seems
quite suitable, the two hybrid vehicle architectures
do not appear to offer a similar system decomposi-
tion to enable modeling flexibility at the system lev-
el. In particular, these example hybrid architectures
do not appear to implement a formal electrical sub-
system nor are the elements of the hybrid drivetrain
grouped at the subsystem level. These features are
required to support plug-n-play modeling at the sys-
tem level with model components of varying level of
detail. It should be noted that the hybrid vehicle ar-
chitectures are appropriate for some model imple-
mentations but simply may not provide enough flex-
ibility for models of varying level of detail with mi-
nimal changes to the top-level architecture.

(a) Conventional vehicle

(b) PowerSplit hybrid

(c) Series hybrid

Figure 2. Example architectures for conventional and
hybrid vehicles from the VehicleInterfaces library

2.2 New Architecture

Given the observations noted in the previous section
regarding the example architectures in Vehicle Inter-
faces 1.1, a new architecture was developed based on
the following design criteria:

• Extension from VehicleInterfaces design to
maximize compatibility with existing model
libraries

• Single model architecture that supports both
conventional and hybrid vehicle models

• Additional support for electrical and thermal
systems

To meet the design criteria above, the extended ve-
hicle architecture shown in Figure 3 was developed.
There are several interface models from the Vehic-
leInterfaces library which required little or no mod-
ification. These models include the driver, world,
road, and atmosphere components. The remaining
interfaces are either modified or newly-added and
will be discussed in detail next.

Figure 3. Model architecture

To support the proliferation of electrical components
throughout modern vehicle subsystems, an electrical
bus connector was added to the accessories, power-
plant, transmission, driveline, chassis, and brakes
subsystems. The electrical bus is an expandable
connector that supports both single and multivoltage
representations of the vehicle electrical system. Note
that it is not required to terminate the electrical con-
nection in component implementations which do not
interact with the electrical system. As a result, no
special provisions must be made for handling elec-
trical connections in subsystem models that do not
interact with the electrical bus.

In an effort to formalize the electrical subsystem, a
new component is added for the electrical power
network. The electrical power network is meant to
represent the source of electrical power for the ve-
hicle. Implementations of this subsystem could in-
clude a single battery, multiple batteries, power con-
verters, and other components that provide and trans-
form electrical power for use by the other subsys-
tems.

A thermal bus was added to several components in
the architecture. The thermal bus is also imple-
mented as an expandable connector. The thermal
bus was added to the electrical power network and
accessory subsystems to facilitate modeling of the
HVAC system for both vehicle and electrical system

cooling. It should be noted that the thermal bus
could also be added to the other vehicle subsystems
to support thermal modeling of the engine, transmis-
sion, driveline, chassis, and brakes as shown in Sec-
tion 6. A new cabin component was added to sup-
port thermal modeling of the cabin environment. A
new thermal network component was added to pro-
vide the thermal linkages between the various inte-
racting thermal components. These linkages could
include cooling provided from the HVAC compo-
nents in the accessories to the electrical power net-
work and cabin components, thermal pathways be-
tween the electrical power network and the cabin,
and thermal linkages between the vehicle and ex-
ternal environment. The addition of the thermal
network component provides additional flexibility to
modify the thermal routing between components
without requiring modification of the models that
implement the thermal capacitances.

The design of the electrical and thermal networks
decouples the mechanical, electrical and thermal ar-
chitectures. In this way, the electrical power and
thermal network subsystem models allow complete
different architectures for those subsystems to be
implemented in a way that is orthogonal to the me-
chanical architecture.

With the ability to internally ground the reaction tor-
ques in the various component models in the Mod-
elica Standard library, the impact of the various
models on the powertrain mounts is often easily
overlooked. Thus, powertrain mounts were also add-
ed to the vehicle architecture to encourage considera-
tion of the impact of the drivetrain on the mounting
system.

To support modeling of the vehicle control strategy,
a controller network component was added to the
vehicle architecture. The controller network can
support both a single and distributed controller archi-
tecture as shown in the interfaces in Figure 4. Note
the vehicle system controller which interacts with the
driver interface and component controllers. Sample
component controllers are engine, transmission, bat-
tery, driveline, climate control, motor, generator, etc.
depending on the vehicle architecture. The function-
al form of these controllers is flexible enough that
they can be mapped to hardware control units if de-
sired. The controller network interface is flexible
and configurable to allow the addition of other con-
trollers, implementation of controllers of varying
levels of detail, and controller implementations na-
tively in Modelica along with external implementa-
tions such as C code and Simulink.

Figure 4. Distributed controller network interfaces

3 Canonical Library Structure

Despite the formal Modelica language features for
model configuration, managing model variants and
parameter data is a challenge in complex, hierarchic-
al models. The challenge exists not only for the ini-
tial library developer but also subsequent model de-
velopers and end users. This section describes a ca-
nonical library structure implemented as part of the
vehicle architecture and implementation effort. This
structure was implemented in an effort to satisfy the
needs of the model developer while balancing usabil-
ity concerns for the end user. The guiding principles
behind this structure are as follows:

• Promote object-oriented modeling of plant
and controller subsystems by composition
from reusable, parameterized components

• Provide a model package structure consistent
with the model architecture and within
which it is easy to find existing models and
place new models

• Parameterize models at all levels (subsys-
tem, component, and primitive) to promote
model reuse

• Clearly separate generic, parameterized
models from specific model implementations

• Implement a data model that preserves the
integrity of parameter data throughout the
model life cycle

The key design element of the canonical library
structure is the separation and clear distinction be-
tween parameterized models and model implementa-
tions. Parameterized models include all relevant eq-

uations for simulation but do not specify any design
parameter values. Model implementations extend
from the parameterized models and provide the pa-
rameter design values. In this structure, explicit
model implementations exist as named, fully-
specified entities in the package hierarchy rather than
ad hoc implementations created by specifying para-
meter values at instantiation. The advantages of
named model implementations are as follows:

• No need for separate data package hierarchy
as parameter data is specified directly in
model implementations

• Implemented models clearly separated for
model users

• Fully specified implementations consistently
used in architecture, component tests, etc.
without requiring any additional data to be
provided by user

• Parameterization clearly identified as a task
at creation of implementation model and not
model instantiation

• Integrity of parameter data in model imple-
mentations can be maintained based on de-
sign choices initiated by model developer

• Implementations offer true plug-n-play ca-
pability in architecture without requiring
subsequent modifications, thus integrating
nicely with the replaceable concept in Mod-
elica and tool implementations including
multiple redeclares

The following figures show a sample implementation
of the canonical library structure. Figure 5 shows the
top level package structure which contains the inter-
faces package and the packages for the paramete-
rized models. These packages can include additional
subpackages to further classify the parameterized
models. Note that these packages do not contain any
implementations. Figure 6 shows the vehicle im-
plementations package with implementations for the
Prius and Lexus RX400h. An exploded view of the
Prius implementation package is shown in Figure 7.

Figure 5. Top level package structure

Figure 6. Vehicle implementations package structure

for Toyota Prius and Lexus RX400h

Figure 7. Toyota Prius implementation

To support this library structure, two different types
of parameterization are defined: parameterized mod-
el and configurable models. The characteristics of a
parameterized model are defined as follows:

• Parameters declared in public section of
Modelica model

• Can include instantiation of non-replaceable
models

• Model can be instantiated
• Parameter values provided at instantiation

and parameters can be propagated to higher
level model

• Parameter values can be modified by higher
level component

• Parameter values can be modified after com-
pilation

The characteristics of a configurable model are as
follows:

• Parameters declared in protected section of
Modelica model

• Can include instantiation of replaceable
components

• Model denoted as “partial” to indicate that it
is not complete and can only be instantiated
as a replaceable component in another model

• Explicit model implementations which are
stored in the package hierarchy are required

• Model implementations are created by ex-
tending from the configurable model, pro-
viding parameter data, and selecting imple-
mentations for other configurable models

• Model implementations can be used directly
in other models or tests

• Parameter values cannot be modified by
higher level components at instantiation

• Parameter values can be modified after com-
pilation

Ultimately, the type of parameterization used is de-
fined by the model developer when the model is
created. Some factors to be considered are the com-
plexity of the parameter data, desired integrity of the
parameter data, and the anticipated usage of the
model. It should be noted that virtually all the mod-
els in the Modelica Standard Library are paramete-
rized models according to the characteristics above.
Figure 8 shows a sample configurable transmission
subsystem model. This model is comprised of two
replaceable configurable models for the tor-
que_converter and gearbox components and
one parameterized model for the inertia component.

Figure 8. Sample configurable model

4 Hybrid Vehicle Implementations

Using the newly developed architecture, four sample
vehicle implementations were created. The imple-
mented models include the Toyota Prius, Lexus
RX400h, and concept versions of a hybrid sedan and
SUV. While the vehicle model architecture obvious-
ly supports models of varying level of detail and a
wide range of engineering analyses, these implemen-
tations were focused on drive cycle simulations for
fuel economy. The parameterization data for these
models was collected from available publications in
the open literature and from the last publicly-
available version of ADVISOR [9].

The vehicle model implementations include the fol-
lowing subsystem representations:

• Accessories including performance-oriented
model of vehicle air-conditioning system

• Mapped engine model
• Various implementations of conventional

and hybrid transmissions with motors, gear
seats, clutches, etc.

• Rigid front wheel drive (FWD) drivelines
• Vehicle chassis with lumped vehicle inertia,

no-slip tires, and loads for aerodynamic drag
and rolling resistance

• Simple brakes with prescribed actuation
• Dual voltage electrical power networks with

fixed capacity battery models including bat-
tery thermal response

• Thermal networks including routing for bat-
tery and cabin cooling

• Lumped cabin models for vehicle cooling
• Controller network implementations includ-

ing vehicle system, engine, transmission,
battery, motor, generator, climate, and brake
controllers

• Driver models based on drive cycles with
capability to run both forward and backward
models

The acausal nature of the Modelica modeling lan-
guage enables several nice features of the model ar-
chitecture:

• Ability to run both forward and backward
drive cycle simulations with change only to
the driver model (assuming underlying mod-
el is invertible)

• Ability to use model inversion to implement
control features

• Ability to re-use physical, validated models
across subsystems and applications

• Ability to plug-n-play models of varying
level of detail to enable a wide range of en-
gineering analyses to support model-based
engineering over the entire product devel-
opment process

4.1 Toyota Prius

The vehicle model implementation for the parallel
hybrid Toyota Prius is shown in Figure 9. The im-
plementation of the transmission subsystem for the
PowerSplit transmission contains the motor, genera-
tor, and gearing components consistent with the hy-
brid transmission delineation in the Toyota drivetrain
schematic [10] shown in Figure 10.

Figure 9. Toyota Prius model

Figure 10. Toyota Prius drivetrain schematic [10]

4.2 Lexus RX400h

The vehicle model implementation for the Lexus
RX400h is shown in Figure 11. Like the Toyota
Prius, the Lexus RX400h is a parallel hybrid vehicle
with a PowerSplit transmission. The drivetrain
schematic in Figure 10 is applicable to the Lexus
RX400h as well.

Figure 11. Lexus RX400h model

4.3 Concept Hybrid Sedan

The vehicle model implementation for a concept hy-
brid sedan with a parallel hybrid architecture is
shown in Figure 12.

Figure 12. Concept hybrid sedan model

4.4 Concept Hybrid SUV

The vehicle model implementation for a concept hy-
brid SUV with a parallel architecture is shown in
Figure 13.

Figure 13. Concept hybrid SUV model

5 Drive Cycle Simulations

Sample drive cycle results from the four vehicle im-
plementations are shown in this section. Fuel con-
sumption data in L/100km is shown in Figure 14 for
the four vehicles. The drive cycle is a proprietary
cycle developed based on real-world driving over a
range of conditions of interest to hybrid vehicle de-
velopment.

(a) Toyota Prius

(b) Lexus RX400h

(c) Concept hybrid sedan

(d) Concept hybrid SUV

Figure 14. Fuel economy simulations

While every attempt was made to incorporate actual
vehicle parameter data into the simulations, certain
key parameters and component specifications were
not available and thus were implemented based on
the authors’ best engineering judgment or based on
appropriate scaling from existing data. In addition,
drive cycle fuel consumption is highly dependent on
the implementation and calibration of the vehicle
control strategy. While control strategies were im-

plemented for all four vehicles, these strategies may
not be representative of the actual, proprietary con-
trol strategies for the production vehicles. Thus, the
fuel economy results should be viewed as representa-
tive only. Furthermore, it should be noted that there
is no experimental data with which to compare the
model as these vehicles either do not exist yet in
hardware or were not actually driven over this drive
cycle. However, the results appear reasonable and
follow the expected trends.

Figure 15 shows some additional signals from the
Prius drive cycle simulations. The top graph shows
the speeds of the engine, motor, and generator during
the drive cycle. The bottom graph shows the state of
charge (SOC) in the high voltage battery. The result-
ing battery dynamics include the contributions of the
vehicle system and battery control characteristics and
charge/discharge due to driving requirements and
regenerative braking.

(a) Device speeds

(b) Battery state of charge

Figure 15. Prius drive cycle results: device speeds and
battery state of charge

6 Extensions to VehicleInterfaces

The VehicleInterfaces library [8] provides a solid
architecture to support vehicle system modeling. The
library offers substantial flexibility in modeling the
mechanical (both 1D and 3D) and control system
interactions in the vehicle. Based on the extensions
to the library implemented as part of this work, this

section proposes additions to VehicleInterfaces to
enable improved support for future vehicle modeling
efforts.

6.1 Electrical Modeling

Electrification of nearly all major vehicle subsystems
in both conventional and hybrid vehicles necessitates
system leveling modeling of electrical systems. Cur-
rently VehicleInterfaces does not include electrical
connectors and interactions at the subsystem level.
The following extensions to VehicleInterfaces would
improve the library’s ability to support vehicle mod-
eling including electrical system effects:

• Addition of expandable electrical bus to all
major vehicle physical subsystems as shown
in Figure 16

• Addition of electrical power network subsys-
tem to serve as architecture placeholder for
electrical energy sources, converters, etc.
which distribute electrical power via the ex-
pandable electrical bus to other vehicle sub-
systems

These extensions eliminate the need to extend the
existing interfaces in VehicleInterfaces simply to add
an electrical bus. In addition, the formal inclusion of
an electrical system will natively allow modeling of
hybrid vehicle architectures in a standardized archi-
tecture as shown in Figure 16 without having to add
electrical components in an ad hoc way to the top-
level architecture.

6.2 Thermal Modeling

System level thermal modeling is another key ele-
ment of vehicle system modeling. Currently Vehic-
leInterfaces does not include thermal interactions at
the subsystem level. The extended vehicle model
architecture shown in Figure 3 includes the addition
of an expandable thermal bus to a few top level sub-
system components. As mentioned in Section 2.2,
the most flexible implementation would include the
addition of the thermal bus to all major vehicle sub-
systems as shown in Figure 16. Including an ex-
pandable thermal bus eliminates the need to extend
the existing interfaces in VehicleInterfaces simply to
accommodate thermal modeling. The thermal net-
work and cabin subsystems are an integral part of the
thermal architecture for the simulations shown in
Section 5 but could be omitted from a standard archi-
tecture in an effort to minimize top level subsystems.

Figure 16. Sample extended architecture

7 Conclusions

This paper documents the development and imple-
mentation of an extended vehicle model architecture
for hybrid vehicle modeling. This architecture is
based on VehicleInterfaces and more easily enables
flexible, configurable modeling of different hybrid
vehicle configurations without the need for several
different architectures. Additional elements have
been added to the interfaces and architecture to allow
more flexible electrical system modeling and more
detailed thermal modeling. To illustrate the usage of
this architecture, four different hybrid vehicles have
been implemented and sample drive cycle simula-
tions results shown. The canonical library structure
implemented in this work has proven very capable of
handling model development and implementation of
model variants in a user-friendly way that integrates
well with the formal model configuration language
elements in Modelica. The canonical library struc-
ture has been discussed in detail along with a sample
package implementation for the vehicle implementa-
tions shown in this work. Extensions to VehicleIn-
terfaces have been proposed to improve the library
for future vehicle modeling efforts.

Acknowledgements

The authors would like to acknowledge Hubertus
Tummescheit and Magnus Gafvert from Modelon for
initially proposing the scheme and canonical library
structure implemented in this paper. Their contribu-
tions and insights were extremely valuable and are
gratefully acknowledged.

References

[1] J.D. Power Automotive Forecasting, “US
Hybrid-Electric Vehicle Sales Forecast Q3
2008”, 2008.

[2] Tiller, M., Tobler, W.E., and Kuang, M.,
“Evaluating Engine Contributions to HEV
Driveline Vibrations”, Proceedings of 2nd In-
ternational Modelica Conference, pp. 19-24,
2002.
http://www.modelica.org/events/Conference2
002/papers/p03_Tiller.pdf

[3] Laine, L. and Andreasson, J., “Modelling of
Generic Hybrid Electric Vehicles”, Proceed-
ings of 3rd International Modelica Confe-
rence, pp. 87-94, 2003.
http://www.modelica.org/events/Conference2
003/papers/h26_Laine.pdf

[4] Hellgren, J., “Modelling of Hybrid Electric
Vehicles in Modelica for Virtual Prototyp-
ing”, Proceedings of 2nd International Mod-
elica Conference, pp. 247-256, 2002.
http://www.modelica.org/events/Conference2
002/papers/p32_Hellgren.pdf

[5] Simic, D., Giuliani, H., Kral, C., Gragger, J.,
“Simulation of Hybrid Electric Vehicles”,
Proceedings of 5th International Modelica
Conference, pp. 25-31, 2006.
http://www.modelica.org/events/modelica20
06/Proceedings/sessions/Session1b1.pdf

[6] Simic, D., and Bauml, T., “Implementation
of Hybrid Electric Vehicles Using VehicleIn-
terfaces and the SmartElectricDrives Libra-
ries”, Proceedings of the 6th International
Modelica Conference, pp. 557-563, 2008.
http://www.modelica.org/events/modelica20
08/Proceedings/sessions/session5c.pdf

[7] Tiller, M., Bowles, P., and Dempsey, M.,
“Development of a Vehicle Modeling Archi-
tecture in Modelica”, Proceedings of 3rd In-
ternational Modelica Conference, pp. 75-86,
2003.
http://www.modelica.org/events/Conference2
003/papers/h32_vehicle_Tiller.pdf

[8] Dempsey, M., Gafvert, M., Harman, P., Kral,
C., Otter, M., and Treffinger, P., “Coordi-
nated Automotive Libraries for Vehicle Sys-
tem Models”, Proceedings of 5th International
Modelica Conference, pp. 33-41, 2006.
http://www.modelica.org/events/modelica20
06/Proceedings/sessions/Session1b2.pdf

[9] National Renewable Energy Laboratory
(NREL), “Advisor documentation”,
www.ctts.nrel.gov, 2002.

[10] Toyota Motor Corporation, “Toyota Hybrid
System II: Hybrid Transmission”, 2009.

http://www2.toyota.co.jp/en/tech/environmen
t/ths2/hybrid.html

