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Abstract

A new type of high-performance robots has been
developed by ABB Robotics, the Robotics Lab
at Lund University and Güdel AG, Switzerland.
In all parts of the project, ranging from the
simulation of the kinematic configuration and
reachable workspace, and kinematic and dynamic
calibration/grey-box identification, and to code
generation of controllers and optimal switching
strategies for hybrid control, Modelica and Opti-
mica provide very valuable functionality. We will
make a short overview of the different aspects used
during the development.
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1 Introduction

A new type of high-performance manipulator, the
Gantry-Tau robot [1], has been developed within
the EU FP-6 project SMErobotTM[2] by ABB
Robotics, the Robotics Lab at Lund University
and Güdel AG, Switzerland. The new concept,
which is based on the parallel configuration of the
robot’s joints (parallel robots), see Fig. 1, is mod-
ular, has a large open workspace, is easy to scale
and has the inherent benefit of very low inertia
of the moving robot parts. This, together with
high stiffness of joints and arms, makes it possi-
ble to build high-performance robots with respect
to accuracy, speed, stiffness and mechanical band-
width.

Modelica and the MultiBody Library [3] can ad-
vantageously be used for modeling and control of
robots. In [4] we have reported on how the dy-
namic model equations of the Gantry-Tau robot
were extracted from a MultiBody Modelica model

Figure 1: Full size Gantry-Tau prototype developed
within the SMErobotTMproject. The carts (red) are
controlled in a coordinated way along the three rails to
move the tool/end-plate along a desired trajectory.

of the robot. The control of a parallel robot using
an inverse dynamic model generated by Dymola is
presented in [5].

This article presents how different functionali-
ties of Modelica have been used for modeling, sim-
ulation, identification and controller generation of
the Gantry-Tau manipulator during the different
project phases. Two main areas will be discussed:
The first is the calibration of the robot’s kinemat-
ics using Optimica [6], the second the optimization
of the actuator control.

In [4], the authors carried out kinematic cali-
bration of the Gantry-Tau robot using a scripting
language. In this work, it is shown how a Model-
ica model for optimization is generated of a sub-
set of the original MultiBody model of the robot.
The kinematic parameters are then optimized us-
ing Optimica.

To reduce backlash and improve the actuator
positioning, the usage of two motors for each cart
has been investigated. The actuator system was
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Figure 2: Gantry-Tau schema with variable and pa-
rameter notation

modeled in Modelica and a hybrid switching con-
trol concept has been tested and optimized using
Dymola.

The article is structured as follows: In Sect. 2,
the Gantry-Tau manipulator is presented, Sect. 3
describes the kinematic calibration and Sect. 4 the
dual motor control. In Sect. 5 the results and
methodology are discussed and Sect. 6 concludes
the article.

2 The Gantry-Tau Robot

The 3 degree-of-freedom (DOF) parallel Gantry-
Tau robot (Figs 1 and 2) consists of three kine-
matic chains. A prismatic actuator, implemented
as a cart moving on a track is connected to an end-
effector plate via a link cluster. The altogether
6 links, mounted with passive spherical joints on
cart and plate, are distributed in a 3-2-1 configu-
ration to the 3 link clusters. The spherical joint
placement on carts and plate is such that links be-
longing to one cluster form parallelograms, which
assures a constant end-effector orientation.

The actuation for the linear motion of the carts
along the rails are provided by a so called rack-
and-pinion system. In all transmissions friction
and backlash may severely degrade the perfor-
mance and accuracy. However, with a rack-and
pinion system several motors/carts/robots may be
mounted on the same rail and can be controlled
independently of each other, which is not the case
if the linear motion transmission is made by e.g.,
ball screws. In Sect. 4 this property will be used
for dual motor control and backlash reduction, see
also Fig. 5.

As the end-effector orientation is constant for
all cart positions, it is sufficient to consider one

link per kinematic chain. In addition to a full
model with 6 links according to Fig. 2, a simplified
Gantry-Tau model has been implemented using
the Modelica MultiBody Library (Fig. 3). Here
the end-effector orientation is kept constant by a
block (blue rectangle in the bottom) which con-
tains 3 passive, serially connected prismatic joints
aligned with the 3 coordinate axes. Each of the
3 kinematic chains visible in Fig. 3 consists of a
model for track and cart positioned in the base
coordinate system by a FixedTranslation block
and a link connected to the end-effector plate. In-
put signals of the model are the cart positions.
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Figure 3: Modelica model of a Gantry-Tau PKM

3 Kinematic Calibration using

Optimica

To determine the kinematic parameters, the end-
effector position (X,Y,Z) was recorded with a
laser tracker for a number of actuator positions
(q1,q2,q3). The altogether 21 parameters to opti-
mize are link lengths Li, the vectors in track direc-
tion ci and the track offsets (Xoffset

i ,Y offset
i ,Zoffset

i ),
which accumulate the start positions (X0

i ,Y
0
i ,Z

0
i )

and the offsets between spherical joints and tool
center point (TCP) on the end-effector plate, i=
1,2,3 (see Fig. 2).

The calibration with Optimica is divided in sev-
eral steps. As the MultiBody Library is not yet
compatible with Optimica, a flat Modelica model
for optimization has to be generated. For that,
the model equations are extracted automatically
from the MultiBody model. With a subset of these
equations, the kinematic constraint equations, a
model for optimization is then generated. After



the optimization, the results are validated.
The extraction of the model equations was first

presented in [4]. When translating the MultiBody
model in Dymola, the dsmodel.mof file with a list-
ing of the translated Modelica code can be gener-
ated. This file contains a section with the rel-
evant model equations and assignments relating
the large number of variables and parameters that
the MultiBody model contains. A script written
in python parses this file, extracts the model equa-
tions and uses the assignments to successively sub-
stitue variables and parameters until the equations
are expressed in a desired and previously deter-
mined set of parameters and variables. The equa-
tions for the kinematic constrains are:

0 = L2
i −

(

(Xi−X)2 + (Yi−Y )2+

+(Zi−Z)2
)

, i= 1,2,3, (1)

where the cart position (see Fig. 2)
(Xi,Yi,Zi)T = (Xoffset

i ,Y offset
i ,Zoffset

i )T + qi · ci.
The remaining 9 equations can be found in [4].
Using the measurement data and the kinematic

constraint equations among the extracted equa-
tion system, a new Modelica model for optimiza-
tion is then generated:

model GTPKinCalib

parameter Real q1[N] = {data};

parameter Real q2[N] = {data};

parameter Real q3[N] = {data};

parameter Real X[N] = {data};

parameter Real Y[N] = {data};

parameter Real Z[N] = {data};

parameter Real L1;

parameter Real X1offset;

parameter Real Y1offset;

parameter Real Z1offset;

parameter Real c1[3];

parameter Real L2;

parameter Real X2offset;

. . .

Real f1[N];

Real f2[N];

Real f3[N];

Real cost;

equation

for i in 1:N loop

f1[i] = kinematic constraint link 1;

f2[i] = kinematic constraint link 2;

f3[i] = kinematic constraint link 3;

end for;

cost = f1[1]2+f2[1]2+f3[1]2+ . . .;

end GTPKinCalib;

The variables fi[N] in the model GTPKinCalib

are the residuals for equation (1) for the given
measurement data and parameter values. The
variable cost is then minimized using Optimica.

3.1 Results

For kinematic calibration, the TCP position
(X,Y,Z) was recorded for 176 robot poses with
known actuator positions (q1,q2,q3) with a laser
tracker. Every second measurement was used for
calibration, the remaining ones for the validation
of the optimization results.

Figure 4 shows the validation results of the cal-
ibration. The calibrated model has a mean abso-
lute positioning error of about 140 µm. Very sim-
ilar results for parameters and positioning accu-
racy can be obtained with the Matlab script used
in [4].
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Figure 4: Positioning accuracy of the Gantry-Tau af-
ter calibration: absolute positioning error of TCP for
the validation measurement points. The model cali-
brated with Optimica (solid) and the model obtained
with the Matlab script used in [4] (dashed) give very
similar results.



4 Dual Motor Control

To meet the demands on the system, kinematic
sensitivity analysis shows that the robot needs
backlashfree gearboxes to achieve the desired posi-
tioning accuracy of the robot’s TCP. The actuator
and drive-line of the robot are based on the rack-
and-pinion principle which has been simulated in
Modelica.

Figure 5: Backlash is present in gearboxes and connec-
tion to rails (rack-and-pinion); By using two motors on
each cart, which work in opposite directions, improved
positioning accuracy and stiffness can be achieved.

In the following, a model representing the
robot’s actuator drive-line and including a control
law for the dual motor control is implemented in
Dymola. We will then show, how the Optimiza-
tion Function of the Dymola Design Library both
can be used to optimize the parameters of the mo-
tor control law and how to find the the optimal
switching instant for when to change direction be-
tween the motors..

4.1 Model and control law

A model representing the robot’s actuator drive-
line consisting of two driving motors and one cart
is implemented in Modelica as shown in Fig. 6.
Each motor is connected to the load by a free
shaft inertia. The backlash is modeled by the
’ElastoBacklash’-block of the Mechanics-package.

This kind of system represents an extension of a
two-mass system exhibiting backlash. The latter
has been well-studied in literature since the 1940s,
due to the fact that in most cases the considered
plants which exhibit backlash-effects may be mod-
eled as such a two-mass system. Some older and
more recent research on this standard plant can
be found in [7], [8]. In the present case, the addi-
tional second motor is considered by introducing
a third mass, which leads to a three-mass system

Figure 7: Nonlinear dual motor control structure of
a three-mass system. Kswitch defines the switching of
the slave motor and provides the master motor with
additional information through a feed-forward struc-
ture.

with two nonlinearities representing the backlash
between each motor and the cart.

The implemented control structure aims to use
both motors for the motion drive while the system
is not in backlash and to switch the operating di-
rection of the second motor when the system gets
into backlash for fast closing the backlash gap and
improving the position accuracy of the carts, and
thus of the robot TCP. In the traditional case of a
cart driven by just one motor limit cycles may oc-
cur in the system due to the backlash. These can
be eliminated by the dual motor control. There-
fore a nonlinear, smooth switching control law
based on a switching variable v ∈ [−1,1] (’direc-
tion’) and a switching function Kswitch is designed
(see Fig. 7). For first simulations nominal param-
eters for the controllers and the switching function
are used. Herewith, the results shown in Fig. 8 are
obtained. As desired, no limit cycles occur.

4.2 Parameter Optimization

This section aims to improve the system perfor-
mance by optimizing the controller parameters
and the switching of the second motor. For this
purpose, the Optimization Function of the Dy-
mola Design Library is used. This design tool
provides several optimization algorithms and al-
lows to optimize parameters of a Dymola model
with respect to certain criteria. An introduction
to the function is given in [9].

4.2.1 Controller parameter optimization

In a first step, we aim to optimize parameters for
the outer-loop PID-controller, controlling the cart
position xpos. Therefore the following cost func-
tion is defined



f =min
(

max
(

1
W1

riseTime(xpos)

+
1
W2

overshoot(xpos)

+
1
W3

settlingTime(xpos)
))

with weights W1 = 1.7473, W2 = 10−4 and W3 =
3.957. Blocks to determine the rise time, the over-
shoot and the settling time are provided by the
Dymola Design Library.

For the optimization an operation with a con-
stant torque on the second motor is chosen, thus
v = −1. The values of the weighting parameters
correspond to the obtained results of the charac-
teristics when simulating with the nominal con-
troller parameters. The available tuning parame-
ters are Kp, Ti and Td of the PID-controller. The
optimization is carried out using the different al-
gorithms implemented in the Optimization Func-
tion. As starting values the nominal values of the
PID-controller

KP = 200, Ti = 1.5, Td = 0.05

are used. The start value of the cost function is
then 3.00354. The Optimization Function allows
also to set bounds on parameters. We set the fol-
lowing bounds

Kp ∈ [100,300], T i ∈ [0.5,2], Td ∈ [0.01,0.1].

An overview of the results is provided in Table 1.
The best results are obtained by Pattern Search
and Genetic Algorithm.

4.2.2 Switching parameter optimization

In this section, we consider the switching strat-
egy, that is when to change direction of the second
motor (slave motor), see Fig. 7. The switching is
based on the relative position error

eabs =
|xref,new−xpos|

|xref,new−xref,old|
.

A schematic view of the switching v is depicted
in Fig. 9, where the parameters emax and emin
parametrize the curve and thus can be used as tun-
ing parameters for the optimization. For a more
detailed description, see [10].

Figure 9: Switching function v= f(eabs). |v| takes the
value 1, when eabs < emin . If eabs > emax , v takes
the value 0.

To minimize energy and reduce overshoot for a
step response in the position reference, the follow-
ing cost function is defined

f1 = min(max(
1
W1

∫ T

0

(u2

1 +u2

2)dτ

+
1
W2

overshoot(xpos))), (2)

with W1 = ψ · 2165 and W2 = 3 · 10−4. The
weighting parameters correspond to the values ob-
tained for the characteristic parameters of the op-
timization function, when operating with the pre-
viously chosen values emax = 0.25 and emin = 0.01,
as well as an input step reference of xpos,ref =
0.1 m and a simulation time of t = 10 s. As the
optimization goal consists of minimizing the en-
ergy input by avoiding any overshoot in the sys-
tem’s step response, the energy input is addition-
ally weighted with a factor ψ = 10.

For the optimization different start values and
optimization methods are chosen. As initial values
for the switching parameters two sets are chosen,
[emax = 0.5, emin = 0.25] and [emax = 0.25, emin =
0.01]. The cost function has then a start value
of f1(start) = 9.54322 and f1(start) = 10.9464 re-
spectively. The tuning parameters are limited to
emax ∈ [0.1,1] and emin ∈ [0.01,1] in order to avoid
switchings in the area where limit cycles occur.
An overview of the different setups and the corre-
sponding results is given in Table 2.

All algorithms give similar results for the opti-
mal switching parameters. These lie in a range
of emax ∈ [0.62,0.69] and emin ∈ [0.40,0.45]. Only
the SQP and the Simplex-method lead to different
results when starting with [emax = 0.25, emin =
0.01]. However, the Genetic Algorithm and the
Pattern Search seem to give more reliable results,



as the value of the cost function and the optimal
switching parameters are almost identical for both
initial sets.

To recheck the optimization results, the cost
function f1 is reformulated to f2

f2 = min

(

max

(

1
W1

∫ T

0

(u2
1 +u2

2)dτ,

1
W2

overshoot(xpos)
))

. (3)

Then the start values are f2(start) =
[8.8531, 0.6901] and
f2(start) = [10.02246, 0.9240]. The results of
this optimization are shown in Table 3. For the
cases with initial values [emax = 0.5, emin = 0.25]
the results are similar to the ones obtained with
the previous cost function. However, for the
initial set [emax = 0.25, emin = 0.01] there seem
to exist at least two different minima, one in
the neighbourhood of [emax = 1.0, emin = 0.1]
and one around [emax = 0.6, emin = 0.4]. Again
the Genetic Algorithm gives the best results.
The optimal values for the switching parameters
obtained with this method are almost identical
to the ones obtained with the previous cost
function f1. Thus, one can conclude that a pair
of parameters [emax ≈ 0.6, emin ≈ 0.4] may satisfy
the optimization goal best.

As a consequence, the switching parameters are
set to [emax = 0.6, emin = 0.4]. Then the inte-
grated square sum of the required input signals
for a reference step of xpos,ref = 0.1 m and a sim-
ulation time of t = 10 s is reduced from 2165 to
1845, which represents an energy saving of about
15 %.

5 Discussion

The authors showed that the kinematic calibra-
tion method presented gives accurate results. In
comparison to the Matlab script used in [4], the
method is more flexible.

Changes in the MultiBody model of the Gantry-
Tau robot, which would make a cumbersome re-
programming of a calibration script necessary, can
be handeled with minor changes. Such changes
may include kinematic error models (e.g. to con-
sider all 6 links in a slightly non-ideal configura-
tion so that the end-effector orientation varies)

or new robot components (e.g. to increase the
robot’s DOF).

A similar procedure can be used for calibrating
the dynamic model of the Gantry-Tau robot or
models of a different robot.

6 Conclusion and Future Work

This article shows how different functionalities of
Modelica were used for modeling, identification
and controller generation for the parallel kine-
matic Gantry-Tau robot. The work focuses on two
aspects, kinematic calibration with Optimica and
the evaluation and optimization of the actuator
system control.

A method for kinematic calibration of the
Gantry-Tau robot using Modelica and Optimica
was presented and shown to give accurate results.

A nonlinear three-mass system representing the
robots actuator drive-line and a previously de-
signed switching control law has been imple-
mented in Dymola, which Optimization Function
of the Dymola Design Library has then been used
to optimize the control and switching parameters.

In the future, the flexibility of the calibration
method presented can be used for calibrating a
kinematic error model. With a similar proce-
dure, the dynamic model of the Gantry-Tau will
be calibrated and the inverse dynamic model used
for feedforward control. The dual motor control
tested successfully in simulations will be imple-
mented and tested in practice. The possibility of
code generation for hardware-in-the-loop simula-
tions from the Gantry-Tau Modelica models pre-
sented here will be considered.
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Figure 6: Three-mass system representing the robots actuator drive-line implemented in Dymola. The
backlash is represented using ’ElastoBacklash’-block of the Mechanics-package.
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Figure 8: Dual motor control with v = f(eabs) simulated with Dymola. The limit cycles are oppressed
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Furthermore a smooth response is obtained and the strategy is robust against disturbances.



Table 1: Optimization of controller parameters. The Genetic algorithm gives the best result. The
start value of the cost function is 3.00354.

Optimal values Optimization method Optimal value f

[Kp,Ti,Td]
[292.01,1.24,0.01] Pattern Search 1.67645
[229.32,1.38,0.05] SQP 1.82310
[223.38,1.4,0.073] Simplex 1.88427
[281.92,1.25,0.087] Genetic Algorithm 1.67730

Table 2: Optimization of switching parameters with cost function f1 of Eq.(2). The Genetic algorithm
gives the best results. The start value of the cost function is 10.9464.

Start Optimization Optimal Optimal

values method value f1 values

[0.5,0.25] Pattern Search 9.08898 [0.69,0.41]
[0.5,0.25] SQP 9.06205 [0.62,0.44]
[0.5,0.25] Simplex 9.08140 [0.63,0.45]
[0.5,0.25] Genetic Algorithm 9.06148 [0.62,0.45]
[0.25,0.01] Pattern Search 9.08444 [0.68,0.4]
[0.25,0.01] SQP 9.47738 [1,0.01]
[0.25,0.01] Simplex 9.19005 [1,0.24]
[0.25,0.01] Genetic Algorithm 9.06148 [0.62,0.45]

Table 3: Optimization of switching parameters with cost function f1 of Eq.(3). The Genetic algorithm
gives again the best results. The start values of the cost function are [10.02246, 0.924029].

Start Optimization Optimal Optimal

values method value f1 values

[0.5,0.25] Pattern Search 8.50622,0.51865 [0.67,0.40]
[0.5,0.25] SQP 8.60525,0.51835 [0.55,0.33]
[0.5,0.25] Simplex 8.49155,0.57118 [0.60,0.44]
[0.5,0.25] Genetic Algorithm 8.49167,0.57253 [0.61,0.45]
[0.25,0.01] Pattern Search 8.80359,0.65697 [1,0.033]
[0.25,0.01] SQP 8.81529,0.66332 [1,0.01]
[0.25,0.01] Simplex 8.55782,0.58015 [0.98,0.28]
[0.25,0.01] Genetic Algorithm 8.49013,0.57150 [0.62,0.44]


