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Abstract 

This paper deals with the model generation for 

automation systems. A generic solution is presented, 

which analyses existing Computer Aided Engineer-

ing (CAE) documents and thereof automatically gen-

erates simulation models. They are described as 

Modelica models and use a special library, custom-

ized for the automation branch. It contains common 

elements which can be parameterized with very few 

efforts. Additional components for the communica-

tion to the control are available. They support several 

widely accepted technologies like OPC, Profibus, 

Profinet, analog and digital signals. 

The generation process focuses on being as auto-

mated as possible. It is a general approach, which 

could be applied to various types of simulation with 

different levels of detail. Its integration into a soft-

ware prototype shows the feasibility and provides 

first practical feedback. 
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1 Introduction 

Global product diversification increases the demand 

for more flexible and thus more complex manufac-

turing plants. Reducing their time to market is of 

utmost priority in order to remain competitive. De-

veloping and deploying highly automated machines 

is a most demanding task requiring specialists from 

different domains. Plans for the mechanical con-

struction, the electrical diagrams as well as control 

programs are created under deadline pressure fol-

lowed by the assembly and startup phase.  

Several trends arose to meet the above mentioned 

requirements. The introduction of high level para-

digms to restructure the development process itself 

may be considered as the most future-oriented solu-

tion as seen in [1, 2, 3]. Software tools implementing 

these ideas are based on unified data models to sim-

plify the inter-domain associations [4, 5]. Another 

method of supporting the machine development is 

the extensive use of simulation to improve the design 

quality. Simulations may be applied to verify early 

design decisions and help finding flaws [6]. 

2 Motivation 

A common practice in plant development is simulat-

ing the machines or parts thereof. Such virtual ma-

chines are used to verify control programs and thus 

increase their overall quality in an early stage. This 

method is called virtual startup and may already be 

performed without real machine hardware, leading to 

a reduction of the time needed for the real machine 

deployment as stated by Wünsch [7]. 

This assumption is only true, if the time needed to 

create simulation models does not surpass the ex-

pected gain at a later phase. Especially in the field of 

special purpose machines, where only few repetitive 

systems are constructed, the task of model generation 

is too time consuming. This is also stressed by Ber-

gert in [8]. The task of creating the machine model is 

regarded as additional work to the normal develop-

ment and creates error prone solutions. 

As stated above, the idea of virtual startup lacks op-

timizations allowing its application to broader areas. 

To meet the problem of the time consuming model 

generation task, one has to be reminded that most of 

the required information already exists. It is con-

tained in the construction and manufacturing plans, 

e.g. Computer Aided Design (CAD) drawings and 

circuit diagrams, which are available in digitalized 

form. They are stored and managed in various CAE, 

Enterprise Resource Planning and office applica-

tions. 



One feasible solution is to use readily available inter-

faces of the domain-specific applications as data ac-

cess. They provide the data in digitalized and reus-

able form. As stated in [9], the interoperability be-

tween software systems is a matter of designing ap-

propriate adapters, which translate one set of data 

elements into another one. 

3 State of the art 

3.1 Machine development 

The process of developing a machine or a whole 

plant consists of several phases as seen in Fig. 1. 

These are mainly, the mechanical construction, the 

electrical, pneumatic and/or hydraulic design as well 

as control programming. According to actual guide-

lines, the phases should be performed in a parallel 

way to reduce overall-time and inter-domain errors 

[1]. Despite the obvious advantages, the idea of a 

holistic mechatronic design is far away from being 

common knowledge or a widely accepted method. 

Each domain-specialist performs his respective tasks 

for himself with his favored software tools. His re-

sults remain independent unless they are communi-

cated to other engineers, often in an informal man-

ner. The outcome is a set of different electronic 

CAE-documents, for example CAD-drawings, circuit 

diagrams, pneumatic plans as well as control pro-

grams, whose association is as good as the previous 

inter-domain communication was. 

  
Figure 1: Machine development process

3.2 Assembly and startup 

By using the generated assembly documents, the 

commissioning of the required components and 

products begins. Depending on the product delivery 

times, the machine is being assembled more or less 

in time. As soon as the first functional parts are as-

sembled and electrical connected, its startup begins. 

Design flaws, wiring mistakes, non-documented 

changes and even programming mistakes mostly 

manifest in the startup phase. Beginning at this step, 

the domain specific decisions are forced to work to-

gether and thus often highlight inconsistencies. A 

missing sensor for process-control might lead to 

changes in the mechanical structure of the machine 

as well as its wiring and the control program. Most 

of all, these late corrections take a lot more time than 

they would have required during the design-time. 

3.3 Simulation 

A commonly accepted method to reduce design 

flaws and inter-domain problems is to simulate the 

desired system or parts thereof. Depending on envis-

aged results, different kinds of simulation are used. 

They range from finite-elements-method to test me-

chanical strain over multi-body-systems to calculate 

kinematic behavior of geometric bodies and up to 

behavior-simulation of whole machines. Simulation 

may take place as soon, as the first specifications are 

available. Based on parts of the assembly documents, 

simulation models may be defined. Results are used 

for dimensioning machine parts or to verify its func-

tionality. 

3.4 Virtual startup 

A behavioral model of a machine used for simulation 

is called a virtual machine. Virtual startup is the 

process of driving a virtual machine or plant model 

with real control hardware, as defined by [8]. Cur-



rently available commercial tools like WinMOD or 

Virtuos [10, 11] emphasize the importance of early 

control program tests as their main goal. One of the 

main hindrances of a wide acceptance is the addi-

tional effort of creating the simulation models [12]. 

Repeating machine parts, the heavy use of pre-

defined library components and modification of ex-

isting simulation models allow savings in the model-

ing effort. 

The remaining effort is still considerably and re-

quires engineers, which are familiar with all ma-

chine-aspects expected within the simulation results. 

This counts especially in the field of special purpose 

machines, where the repeated construction of the 

same machine is more than unusual.  

Unfortunately, no currently available tool allows a 

sophisticated reuse of CAE-documents from all de-

sign phases as a base for simulation models. 

4 Solution 

4.1 Starting point 

The software tools currently used for documenting 

the different design phases are manifold. They do not 

share a common data depository nor are they able to 

export their content into a universal data format. 

However, most of them include application pro-

gramming interfaces (API), which provide a limited 

access to their internal data structures [13, 14]. This 

can be used to algorithmically acquire a subset of the 

available information, which is contained in the 

CAE-documents. Each design domain provides a 

different set of information.  

The mechanical construction defines, of which parts 

a machine is composed and how they are intercon-

nected. It focuses on the geometric design of bodies. 

Additionally, their assembly hierarchy is defined by 

various constraints. 

The electrical construction determines, by which 

means electrical energy is transformed into useful 

energy. Actuators manipulate the work piece and 

sensors provide feedback about it. Every machine 

component that needs electrical energy has to be 

documented in circuit diagrams. 

Similar to the electric are the pneumatic and hydrau-

lic constructions. They also transform source energy 

into useful energy. Only the sources, pressurized air 

respective pressurized fluid, are different. The result-

ing diagrams and schematics contain all machine 

parts, which are connected by tubes. 

By relating these data sources to each other, the ma-

jor part of the machine behavior can be estimated. 

Nevertheless, these data source are not sufficient to 

form a complete simulation model. Some associa-

tions are often undocumented, as they are trivial no-

ticeable with a human understanding of the machine. 

For instance, the relation of a linear drive in a circuit 

diagram and its geometric representation in a CAD-

drawing is algorithmically not obvious. Even the 

positioning of sensors within the machine is seldom 

to be found in CAE-documents. In order to being 

able to generate a meaningful simulation model, ad-

ditional data needs to be supplied manually.  

Relating the different data sources takes place as part 

of a data analysis resulting in groups of logical con-

nected objects. Each of them is then to be translated 

into a behavioral identical simulation element. By 

this translation, simulation models representing the 

supplied data sources are created. Fig. 2 shows this 

translation process in a simplified form. 

 
Figure 2: Transforming data sources 

4.2 Transformation process 

Looking into the transformation process in more de-

tail reveals four separate steps as shown in Fig. 3. 

Their starting point are the different data sources, 

which are preferably supplied automatically. Partial 

information needs to be fed manually.  

1) The data acquisition targets the available CAE-

documents. A program module uses the APIs of 

each involved software tool to read out the raw 

information, a user has previously entered during 

his normal workflow. The output represents the 

actual state of the machine being developed. 

2) During the mapping, the raw information parts 

are analyzed and grouped based on their resource 

mark, defined by [15]. Through them, logical 

connected units can be recognized. For instance, 

an electric relay in the circuit diagrams is repre-

sented by a conductor and one or more switches 

which all share a similar resource mark. 



3) The manual input is a necessary step which re-

quires information by the user. The informal data 

exchanged through the inter-domain coordina-

tion, as shown in Fig. 1, has to be formalized. A 

functional decomposition of the machine is pro-

vided as the desired machine development state. 

This will be supplemented by simulation-

parameters not otherwise available. Additional 

associations are created between actuators and 

their respective geometric object, thus allowing a 

3D-visualization during simulation based on the 

CAD-drawings. 

4) The final step in creating a simulation model is 

the consistency check. It is performed based on 

the nominal and the actual machine development 

state. A comparison shows common mistakes 

such as: 

a) specified but not yet realized machine func-

tions 

b) designed but unspecified functions 

c) wiring and tubing changes not consistent 

with the specification 

d) possible communication / wiring problems 

between control program and connected ac-

tuators and sensors. 

The results are reported to the user as recom-

mendation. Updating the data sources in this de-

velopment stage is optional regarding the gen-

eration of a simulation model. Nevertheless 

would a later error search be simplified, if obvi-

ous design flaws are removed. 

In addition, the consistent logical elements are 

mapped to ready Modelica elements. By trying 

to apply rules of a larger set to an analyzed logi-

cal group, a corresponding Modelica library 

element can be found. The rule set to be used 

depends on the complexity of the logical group 

and the available element library. Different kinds 

of mapping rules may apply: 

a) Exactly one circuit element is matched with 

exactly one simulation element. 

b) Exactly one circuit element is matched with 

two or more simulation elements. This helps 

expressing more complex circuit elements 

through a combination of several simple 

simulation elements. 

c) Two or more electric (or pneumatic) ele-

ments are mapped to a single simulation 

element. 

d) A set of circuit elements is matched by an-

other set of simulation elements. 

e) Defining the rule set responsible for a map-

ping is a one-time task. It might be reused 

for following machine developments, as long 

as no additional unmapped electrical com-

ponents exist in the CAE documents. 

  

 
Figure 3: Transformation process in detail 

 

4.3 Simulation usage 

An important impact on the allowed simulation 

model complexity is the application purpose. The 

main goal of this work is the virtual startup of a ma-

chine by using its real control program. Although the 

programming of programmable logic controls (PLC) 

is standardized in [16] not all control vendors con-

form to it. Additionally, various hardware dependant 

features are proprietary, thus making it difficult to 

simulate the control itself in software. Based on this 

assumption, hardware-in-the-loop is the means of 

choice for the simulation usage. The interface be-



tween the virtual machine and the real control hard-

ware are the PLCs input and output signals. An ex-

emplary signal flow through a circuit diagram is 

shown in Fig. 4. 

In order to feign a real machine to the control, the 

simulation has to meet several requirements: 

1) All output signals written by the control need to 

be used within the simulation. Respective need 

all input signals read by the control to be pro-

vided as actual simulation outputs. 

2) The simulation must not progress faster than the 

real control. 

3) The complexity of the simulation model has to 

be chosen to be as time-efficient as possible.  

4) The signal-transmission to and from the control 

must not influence the control program 

Although the control hardware is a hard real-time 

system, the virtual startup itself does not strictly re-

quires it. Of course, if the simulation is working in a 

soft real-time mode, its average calculation time 

should not exceed the controls cycle time. Exceeding 

the cycle time is critical for the validity of the simu-

lation results only if the control is performing opera-

tions, depending on strictly timed feedback.  
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Figure 4: Signal  flow 

4.4 A customized Modelica library 

Although various Modelica libraries exist, the above 

mentioned requirements of runtime optimized simu-

lation elements need to be met. Respecting and mod-

eling all physical effects is possible, but not neces-

sarily relevant. A new library was created to incorpo-

rate machine devices modeled more behavioral than 

physical. It was named after and designed for the 

special needs of the automation branch. An excerpt 

is shown in Fig. 5. 

The desired level of detail of each model element 

was chosen element-wise, depending on the devices 

real functionality. By initially creating all basic ele-

ments, such as relays and switches, more complex 

devices could be built upon them. A later described 

machine example was created through the normal 

development process and taken as reference for fill-

ing the automation library. It contains pneumatic and 

electric elements and is still being extended. 

 
Figure 5: Overview of the automation library 

5 Implementation 

5.1 Connected tools 

During a current research project, the mentioned 

resolution is being implemented. A difficult decision 

had to be made, which software tools are to be used. 

A market survey revealed several CAE-tools, whose 

features were roughly similar, concerning the do-

main specific development requirements. By exam-

ining the available API-functionality according to 

their flexibility and complexity, the choice felt on the 

most promising tools: 

1) Autodesk Inventor as CAD software, 

2) EPlan Electric P8 and its Fluid-addon as tool for 

designing circuit and pneumatic diagrams and 



3) ITI SimulationX as modeling and simulation tool 

[17]. 

The missing connection between all these software 

tools was a program module, which managed the 

transformation process and its underlying data 

sources. In consequence, a standalone application 

(CADSIMA, Fig. 6) was developed, that was able to 

connect and handle the data flow from and to each 

API. In addition it can be used as coordination tool 

between the domain specific design steps, through 

which necessary informal data is acquired.  

 
Figure 6: Screenshot of newly tool Cadsima 

The nominal state can be entered by the user and is 

stored in a database. This allows the distributed ac-

cess to the project data. CADSIMA creates a Simula-

tionX model based on the results of the mapping and 

consistency checks. 

5.2 Analysis and mapping example 

The general data analysis and mapping into model 

elements have been implemented for the selected 

software tools. Their internal data structures showed 

a diversity of objects, whose properties need to be 

evaluated in detail during the analysis. The resulting 

mapping mechanism and corresponding rules are 

derived thereof and explained in the following para-

graph.  

Raw data objects

Regrouped simulation 

elementVisual input circuit diagram
 

Figure 7: Mapping example 

Fig. 7 shows the analysis and mapping of a pneu-

matic monostable 3/2-way valve. A visual inspection 

of the corresponding circuit diagram page displays 

one element with two visual resource marks. The 

internal data model reveals that it contains 5 separate 

objects:  

1) the valve itself with resource mark V101.01, 

2) a spring on the right side, 

3) a manual reset at the left upper side, 

4) a pneumatic trigger on the left side, 

5) an electric trigger at left side with the different 

resource mark Y101.01 and 

6) a reference to an inductor at another page, which 

represents the wired element. 

A rule to find such valves looks for each of the 6 

elements and if found, signals the creation of the cor-

responding simulation element. Wires and tubes are 

stored as connections between pins in the circuit dia-

grams. They are also mapped to pins of the simulated 

pneumatic valve. 

5.3 A first use case 

Current work focuses on providing the resources to 

transform small machines or parts thereof. The re-

sources meant are appropriate library elements and 

defining rule sets for them. This work is a necessary 

step prior to transforming actual CAE documents. 

The reference project of a pick and place handling 

machine, as shown in Fig. 8, contains 3 separately 

controlled axes and a not displayed conveyer. Look-

ing at the mechanical characteristic, it contains about 

30 mechanical parts. Its circuit and pneumatic dia-

grams include on 87 pages roughly 170 articles rep-

resented by more than 1300 separate symbols. About 

25% of these symbols are only for a display purpose 

and not actually wired to other components. Unfor-

tunately, as worst case every remaining symbol 

needs to be transformed into a simulation element. 

 
Figure 8: Handling machine for pick and place 



5.4 Virtual startup 

A setup for a virtual startup contains a real control, 

without additional peripheral equipment and a pc 

running the generated simulation model. The pc will 

communicate with the control hardware via OPC, 

overwrites the controls inputs and reads its outputs. 

No additional hardware as the above mentioned is 

required, although actual displays or human machine 

interfaces can be connected to the control hardware, 

if desired. The control program itself needs a minor 

change to accept the missing peripheral equipment. 

The programs write and read access is not influenced 

by it. Despite that, the program remains identical to 

the one used in the real machine. 

During the simulation run, the control programmer is 

connected to the real control hardware as well. He 

performs the same startup steps as with a real ma-

chine. Its current state can be inspected through the 

simulator and its built-in signal-visualizations. Inter-

active changes are available through overwriting run-

time parameters. 

6 Conclusions and Outlook 

This article described a method, which transforms an 

input data set, e.g. the circuit diagram of a manufac-

turing system, to an output data set, e.g. a simulation 

model of the same machine. It detailed the structure 

of the source data model, the components to which 

they will be transformed and finally, how a simula-

tion run can be performed. The target model library 

consists of Modelica elements combined with com-

munication components which are used for a hard-

ware-in-the-loop simulation. 

This approach drastically reduces the effort in creat-

ing machine models and thus enables even the spe-

cial purpose machine manufacturer to use the virtual 

startup. A system test for validating the control pro-

gram may be undertaken prior to assembly of the 

real machine.  

Actual outcomes for the startup phase, e.g. higher 

program quality or shortened startup time, and for 

the machine development process as whole are out-

standing. Hence, future works should focus on pro-

viding reliable feedback about the methods effec-

tiveness in the field of application. 

Experiments on measuring the numerical perform-

ance of larger machine models should be undertaken 

prior to extending the automation library to support 

more complex development projects. The usage of a 

faster communication protocol and appropriate hard-

ware, e. g. Profibus or Profinet, would allow a better 

integration of feedback controlled systems working 

with smaller cycle times. 

This work originated in the cooperation of the com-

panies USK Karl Utz Sondermaschinenbau GmbH 

Limbach-Oberfrohna, ITI GmbH Dresden and the 

Fraunhofer Institute for Machine Tools and Forming 

Technology IWU during the joint research project 

“Depromes”, funded by the Sächsische Aufbaubank. 
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