
Model based Virtual Startup of Automation Systems

Uwe Schob (uwe.schob@iwu.fraunhofer.de), Ralf Böttcher,

Fraunhofer IWU,

Reichenhainer Straße 88, 09126 Chemnitz

Torsten Blochwitz, Olaf Oelsner, ITI GmbH Dresden

Marek Winter, USK Karl Utz Sondermaschinenbau GmbH Limbach-Oberfrohna

Abstract

This paper deals with the model generation for

automation systems. A generic solution is presented,

which analyses existing Computer Aided Engineer-

ing (CAE) documents and thereof automatically gen-

erates simulation models. They are described as

Modelica models and use a special library, custom-

ized for the automation branch. It contains common

elements which can be parameterized with very few

efforts. Additional components for the communica-

tion to the control are available. They support several

widely accepted technologies like OPC, Profibus,

Profinet, analog and digital signals.

The generation process focuses on being as auto-

mated as possible. It is a general approach, which

could be applied to various types of simulation with

different levels of detail. Its integration into a soft-

ware prototype shows the feasibility and provides

first practical feedback.

Keywords:

Automation; Model Generation; Machine-

simulation; Modeling; CAE-analysis; Virtual Startup

1 Introduction

Global product diversification increases the demand

for more flexible and thus more complex manufac-

turing plants. Reducing their time to market is of

utmost priority in order to remain competitive. De-

veloping and deploying highly automated machines

is a most demanding task requiring specialists from

different domains. Plans for the mechanical con-

struction, the electrical diagrams as well as control

programs are created under deadline pressure fol-

lowed by the assembly and startup phase.

Several trends arose to meet the above mentioned

requirements. The introduction of high level para-

digms to restructure the development process itself

may be considered as the most future-oriented solu-

tion as seen in [1, 2, 3]. Software tools implementing

these ideas are based on unified data models to sim-

plify the inter-domain associations [4, 5]. Another

method of supporting the machine development is

the extensive use of simulation to improve the design

quality. Simulations may be applied to verify early

design decisions and help finding flaws [6].

2 Motivation

A common practice in plant development is simulat-

ing the machines or parts thereof. Such virtual ma-

chines are used to verify control programs and thus

increase their overall quality in an early stage. This

method is called virtual startup and may already be

performed without real machine hardware, leading to

a reduction of the time needed for the real machine

deployment as stated by Wünsch [7].

This assumption is only true, if the time needed to

create simulation models does not surpass the ex-

pected gain at a later phase. Especially in the field of

special purpose machines, where only few repetitive

systems are constructed, the task of model generation

is too time consuming. This is also stressed by Ber-

gert in [8]. The task of creating the machine model is

regarded as additional work to the normal develop-

ment and creates error prone solutions.

As stated above, the idea of virtual startup lacks op-

timizations allowing its application to broader areas.

To meet the problem of the time consuming model

generation task, one has to be reminded that most of

the required information already exists. It is con-

tained in the construction and manufacturing plans,

e.g. Computer Aided Design (CAD) drawings and

circuit diagrams, which are available in digitalized

form. They are stored and managed in various CAE,

Enterprise Resource Planning and office applica-

tions.

One feasible solution is to use readily available inter-

faces of the domain-specific applications as data ac-

cess. They provide the data in digitalized and reus-

able form. As stated in [9], the interoperability be-

tween software systems is a matter of designing ap-

propriate adapters, which translate one set of data

elements into another one.

3 State of the art

3.1 Machine development

The process of developing a machine or a whole

plant consists of several phases as seen in Fig. 1.

These are mainly, the mechanical construction, the

electrical, pneumatic and/or hydraulic design as well

as control programming. According to actual guide-

lines, the phases should be performed in a parallel

way to reduce overall-time and inter-domain errors

[1]. Despite the obvious advantages, the idea of a

holistic mechatronic design is far away from being

common knowledge or a widely accepted method.

Each domain-specialist performs his respective tasks

for himself with his favored software tools. His re-

sults remain independent unless they are communi-

cated to other engineers, often in an informal man-

ner. The outcome is a set of different electronic

CAE-documents, for example CAD-drawings, circuit

diagrams, pneumatic plans as well as control pro-

grams, whose association is as good as the previous

inter-domain communication was.

Figure 1: Machine development process

3.2 Assembly and startup

By using the generated assembly documents, the

commissioning of the required components and

products begins. Depending on the product delivery

times, the machine is being assembled more or less

in time. As soon as the first functional parts are as-

sembled and electrical connected, its startup begins.

Design flaws, wiring mistakes, non-documented

changes and even programming mistakes mostly

manifest in the startup phase. Beginning at this step,

the domain specific decisions are forced to work to-

gether and thus often highlight inconsistencies. A

missing sensor for process-control might lead to

changes in the mechanical structure of the machine

as well as its wiring and the control program. Most

of all, these late corrections take a lot more time than

they would have required during the design-time.

3.3 Simulation

A commonly accepted method to reduce design

flaws and inter-domain problems is to simulate the

desired system or parts thereof. Depending on envis-

aged results, different kinds of simulation are used.

They range from finite-elements-method to test me-

chanical strain over multi-body-systems to calculate

kinematic behavior of geometric bodies and up to

behavior-simulation of whole machines. Simulation

may take place as soon, as the first specifications are

available. Based on parts of the assembly documents,

simulation models may be defined. Results are used

for dimensioning machine parts or to verify its func-

tionality.

3.4 Virtual startup

A behavioral model of a machine used for simulation

is called a virtual machine. Virtual startup is the

process of driving a virtual machine or plant model

with real control hardware, as defined by [8]. Cur-

rently available commercial tools like WinMOD or

Virtuos [10, 11] emphasize the importance of early

control program tests as their main goal. One of the

main hindrances of a wide acceptance is the addi-

tional effort of creating the simulation models [12].

Repeating machine parts, the heavy use of pre-

defined library components and modification of ex-

isting simulation models allow savings in the model-

ing effort.

The remaining effort is still considerably and re-

quires engineers, which are familiar with all ma-

chine-aspects expected within the simulation results.

This counts especially in the field of special purpose

machines, where the repeated construction of the

same machine is more than unusual.

Unfortunately, no currently available tool allows a

sophisticated reuse of CAE-documents from all de-

sign phases as a base for simulation models.

4 Solution

4.1 Starting point

The software tools currently used for documenting

the different design phases are manifold. They do not

share a common data depository nor are they able to

export their content into a universal data format.

However, most of them include application pro-

gramming interfaces (API), which provide a limited

access to their internal data structures [13, 14]. This

can be used to algorithmically acquire a subset of the

available information, which is contained in the

CAE-documents. Each design domain provides a

different set of information.

The mechanical construction defines, of which parts

a machine is composed and how they are intercon-

nected. It focuses on the geometric design of bodies.

Additionally, their assembly hierarchy is defined by

various constraints.

The electrical construction determines, by which

means electrical energy is transformed into useful

energy. Actuators manipulate the work piece and

sensors provide feedback about it. Every machine

component that needs electrical energy has to be

documented in circuit diagrams.

Similar to the electric are the pneumatic and hydrau-

lic constructions. They also transform source energy

into useful energy. Only the sources, pressurized air

respective pressurized fluid, are different. The result-

ing diagrams and schematics contain all machine

parts, which are connected by tubes.

By relating these data sources to each other, the ma-

jor part of the machine behavior can be estimated.

Nevertheless, these data source are not sufficient to

form a complete simulation model. Some associa-

tions are often undocumented, as they are trivial no-

ticeable with a human understanding of the machine.

For instance, the relation of a linear drive in a circuit

diagram and its geometric representation in a CAD-

drawing is algorithmically not obvious. Even the

positioning of sensors within the machine is seldom

to be found in CAE-documents. In order to being

able to generate a meaningful simulation model, ad-

ditional data needs to be supplied manually.

Relating the different data sources takes place as part

of a data analysis resulting in groups of logical con-

nected objects. Each of them is then to be translated

into a behavioral identical simulation element. By

this translation, simulation models representing the

supplied data sources are created. Fig. 2 shows this

translation process in a simplified form.

Figure 2: Transforming data sources

4.2 Transformation process

Looking into the transformation process in more de-

tail reveals four separate steps as shown in Fig. 3.

Their starting point are the different data sources,

which are preferably supplied automatically. Partial

information needs to be fed manually.

1) The data acquisition targets the available CAE-

documents. A program module uses the APIs of

each involved software tool to read out the raw

information, a user has previously entered during

his normal workflow. The output represents the

actual state of the machine being developed.

2) During the mapping, the raw information parts

are analyzed and grouped based on their resource

mark, defined by [15]. Through them, logical

connected units can be recognized. For instance,

an electric relay in the circuit diagrams is repre-

sented by a conductor and one or more switches

which all share a similar resource mark.

3) The manual input is a necessary step which re-

quires information by the user. The informal data

exchanged through the inter-domain coordina-

tion, as shown in Fig. 1, has to be formalized. A

functional decomposition of the machine is pro-

vided as the desired machine development state.

This will be supplemented by simulation-

parameters not otherwise available. Additional

associations are created between actuators and

their respective geometric object, thus allowing a

3D-visualization during simulation based on the

CAD-drawings.

4) The final step in creating a simulation model is

the consistency check. It is performed based on

the nominal and the actual machine development

state. A comparison shows common mistakes

such as:

a) specified but not yet realized machine func-

tions

b) designed but unspecified functions

c) wiring and tubing changes not consistent

with the specification

d) possible communication / wiring problems

between control program and connected ac-

tuators and sensors.

The results are reported to the user as recom-

mendation. Updating the data sources in this de-

velopment stage is optional regarding the gen-

eration of a simulation model. Nevertheless

would a later error search be simplified, if obvi-

ous design flaws are removed.

In addition, the consistent logical elements are

mapped to ready Modelica elements. By trying

to apply rules of a larger set to an analyzed logi-

cal group, a corresponding Modelica library

element can be found. The rule set to be used

depends on the complexity of the logical group

and the available element library. Different kinds

of mapping rules may apply:

a) Exactly one circuit element is matched with

exactly one simulation element.

b) Exactly one circuit element is matched with

two or more simulation elements. This helps

expressing more complex circuit elements

through a combination of several simple

simulation elements.

c) Two or more electric (or pneumatic) ele-

ments are mapped to a single simulation

element.

d) A set of circuit elements is matched by an-

other set of simulation elements.

e) Defining the rule set responsible for a map-

ping is a one-time task. It might be reused

for following machine developments, as long

as no additional unmapped electrical com-

ponents exist in the CAE documents.

Figure 3: Transformation process in detail

4.3 Simulation usage

An important impact on the allowed simulation

model complexity is the application purpose. The

main goal of this work is the virtual startup of a ma-

chine by using its real control program. Although the

programming of programmable logic controls (PLC)

is standardized in [16] not all control vendors con-

form to it. Additionally, various hardware dependant

features are proprietary, thus making it difficult to

simulate the control itself in software. Based on this

assumption, hardware-in-the-loop is the means of

choice for the simulation usage. The interface be-

tween the virtual machine and the real control hard-

ware are the PLCs input and output signals. An ex-

emplary signal flow through a circuit diagram is

shown in Fig. 4.

In order to feign a real machine to the control, the

simulation has to meet several requirements:

1) All output signals written by the control need to

be used within the simulation. Respective need

all input signals read by the control to be pro-

vided as actual simulation outputs.

2) The simulation must not progress faster than the

real control.

3) The complexity of the simulation model has to

be chosen to be as time-efficient as possible.

4) The signal-transmission to and from the control

must not influence the control program

Although the control hardware is a hard real-time

system, the virtual startup itself does not strictly re-

quires it. Of course, if the simulation is working in a

soft real-time mode, its average calculation time

should not exceed the controls cycle time. Exceeding

the cycle time is critical for the validity of the simu-

lation results only if the control is performing opera-

tions, depending on strictly timed feedback.

PLC output

Electric

switch
Pneumatic

switch

Pneumatic

actuator

Electric

sensor

PLC input

Figure 4: Signal flow

4.4 A customized Modelica library

Although various Modelica libraries exist, the above

mentioned requirements of runtime optimized simu-

lation elements need to be met. Respecting and mod-

eling all physical effects is possible, but not neces-

sarily relevant. A new library was created to incorpo-

rate machine devices modeled more behavioral than

physical. It was named after and designed for the

special needs of the automation branch. An excerpt

is shown in Fig. 5.

The desired level of detail of each model element

was chosen element-wise, depending on the devices

real functionality. By initially creating all basic ele-

ments, such as relays and switches, more complex

devices could be built upon them. A later described

machine example was created through the normal

development process and taken as reference for fill-

ing the automation library. It contains pneumatic and

electric elements and is still being extended.

Figure 5: Overview of the automation library

5 Implementation

5.1 Connected tools

During a current research project, the mentioned

resolution is being implemented. A difficult decision

had to be made, which software tools are to be used.

A market survey revealed several CAE-tools, whose

features were roughly similar, concerning the do-

main specific development requirements. By exam-

ining the available API-functionality according to

their flexibility and complexity, the choice felt on the

most promising tools:

1) Autodesk Inventor as CAD software,

2) EPlan Electric P8 and its Fluid-addon as tool for

designing circuit and pneumatic diagrams and

3) ITI SimulationX as modeling and simulation tool

[17].

The missing connection between all these software

tools was a program module, which managed the

transformation process and its underlying data

sources. In consequence, a standalone application

(CADSIMA, Fig. 6) was developed, that was able to

connect and handle the data flow from and to each

API. In addition it can be used as coordination tool

between the domain specific design steps, through

which necessary informal data is acquired.

Figure 6: Screenshot of newly tool Cadsima

The nominal state can be entered by the user and is

stored in a database. This allows the distributed ac-

cess to the project data. CADSIMA creates a Simula-

tionX model based on the results of the mapping and

consistency checks.

5.2 Analysis and mapping example

The general data analysis and mapping into model

elements have been implemented for the selected

software tools. Their internal data structures showed

a diversity of objects, whose properties need to be

evaluated in detail during the analysis. The resulting

mapping mechanism and corresponding rules are

derived thereof and explained in the following para-

graph.

Raw data objects

Regrouped simulation

elementVisual input circuit diagram

Figure 7: Mapping example

Fig. 7 shows the analysis and mapping of a pneu-

matic monostable 3/2-way valve. A visual inspection

of the corresponding circuit diagram page displays

one element with two visual resource marks. The

internal data model reveals that it contains 5 separate

objects:

1) the valve itself with resource mark V101.01,

2) a spring on the right side,

3) a manual reset at the left upper side,

4) a pneumatic trigger on the left side,

5) an electric trigger at left side with the different

resource mark Y101.01 and

6) a reference to an inductor at another page, which

represents the wired element.

A rule to find such valves looks for each of the 6

elements and if found, signals the creation of the cor-

responding simulation element. Wires and tubes are

stored as connections between pins in the circuit dia-

grams. They are also mapped to pins of the simulated

pneumatic valve.

5.3 A first use case

Current work focuses on providing the resources to

transform small machines or parts thereof. The re-

sources meant are appropriate library elements and

defining rule sets for them. This work is a necessary

step prior to transforming actual CAE documents.

The reference project of a pick and place handling

machine, as shown in Fig. 8, contains 3 separately

controlled axes and a not displayed conveyer. Look-

ing at the mechanical characteristic, it contains about

30 mechanical parts. Its circuit and pneumatic dia-

grams include on 87 pages roughly 170 articles rep-

resented by more than 1300 separate symbols. About

25% of these symbols are only for a display purpose

and not actually wired to other components. Unfor-

tunately, as worst case every remaining symbol

needs to be transformed into a simulation element.

Figure 8: Handling machine for pick and place

5.4 Virtual startup

A setup for a virtual startup contains a real control,

without additional peripheral equipment and a pc

running the generated simulation model. The pc will

communicate with the control hardware via OPC,

overwrites the controls inputs and reads its outputs.

No additional hardware as the above mentioned is

required, although actual displays or human machine

interfaces can be connected to the control hardware,

if desired. The control program itself needs a minor

change to accept the missing peripheral equipment.

The programs write and read access is not influenced

by it. Despite that, the program remains identical to

the one used in the real machine.

During the simulation run, the control programmer is

connected to the real control hardware as well. He

performs the same startup steps as with a real ma-

chine. Its current state can be inspected through the

simulator and its built-in signal-visualizations. Inter-

active changes are available through overwriting run-

time parameters.

6 Conclusions and Outlook

This article described a method, which transforms an

input data set, e.g. the circuit diagram of a manufac-

turing system, to an output data set, e.g. a simulation

model of the same machine. It detailed the structure

of the source data model, the components to which

they will be transformed and finally, how a simula-

tion run can be performed. The target model library

consists of Modelica elements combined with com-

munication components which are used for a hard-

ware-in-the-loop simulation.

This approach drastically reduces the effort in creat-

ing machine models and thus enables even the spe-

cial purpose machine manufacturer to use the virtual

startup. A system test for validating the control pro-

gram may be undertaken prior to assembly of the

real machine.

Actual outcomes for the startup phase, e.g. higher

program quality or shortened startup time, and for

the machine development process as whole are out-

standing. Hence, future works should focus on pro-

viding reliable feedback about the methods effec-

tiveness in the field of application.

Experiments on measuring the numerical perform-

ance of larger machine models should be undertaken

prior to extending the automation library to support

more complex development projects. The usage of a

faster communication protocol and appropriate hard-

ware, e. g. Profibus or Profinet, would allow a better

integration of feedback controlled systems working

with smaller cycle times.

This work originated in the cooperation of the com-

panies USK Karl Utz Sondermaschinenbau GmbH

Limbach-Oberfrohna, ITI GmbH Dresden and the

Fraunhofer Institute for Machine Tools and Forming

Technology IWU during the joint research project

“Depromes”, funded by the Sächsische Aufbaubank.

References

[1] Verein Deutscher Ingenieure: VDI 2206 -

Entwicklungsmethodik für mechatronische

Systeme, Juni 2004.

[2] J. Bathelt: Entwicklungsmethodik für SPS-

gesteuerte mechatronische Systeme, ETH

Zürich, 2006.

[3] CADsys: FOD - Prozesskettenübergreifende

Produktkonfiguration, online, 2006.

[4] Verein deutscher Maschinen- und Anlagen-

bauer: Baukastenbasiertes Engineering mit

Föderal, 2004.

[5] B. Grimm et al.: Universelles Datenaus-

tauschformat, A&D Kompendium, 2008.

[6] M. Ehrenstraßer et al.: Virtuelle Werkzeug-

maschinen für die Simulation, wt

Werkstattstechnik online, Jahrgang 92 (2002)

[7] G. Wünsch: Methoden für die virtuelle Inbe-

triebnahme automatisierter Produktionsyste-

me, Technische Universität München, 2007.

[8] M. Bergert and C. Diedrich: Durchgängige

Verhaltensmodellierung von Betriebsmitteln

zur Erzeugung digitaler Simulationsmodelle

von Fertigungssystemen, in Automation

Kongress, 2008.

[9] U. Schob: Werkzeuge und Methoden zur me-

chatronischen Modellierung von Produkti-

onsanlagen, Technische Universität Chem-

nitz, 2007

[10] Mewes & Partner GmbH: WinMOD, online,

http://www.mewes-partner.de/www/eng/,

2009

[11] ISG Industrielle Steuerungstechnik GmbH:

ISG-virtuos, online, http://www.isg-

stuttgart.de/virtuos.html?&L=1, 2009

[12] G. Reinhart: Teilautomatisierter Aufbau von

Simulationsmodellen, wt Werkstattstechnik

online, Jahrgang 97 (2007)

[13] EPLAN Software & Service GmbH & Co.

KG.: EPLAN API 1.0, application documen-

tation, 2006

[14] Autodesk Inc.: Autodesk Inventor API, ap-

plication documentation, 2004

[15] Deutsches Institut für Normung: DIN EN

61346-2 Industrielle Systeme, Anlagen und

Ausrüstungen und Industrieprodukte - Struk-

turierungsprinzipien und Referenzkennzeich-

nung, 2000

[16] International Electronical Commission: IEC

61131-3 Programmable controllers - Part 3:

Programming languages, 2003

[17] ITI GmbH: SimulationX, online,

http://www.iti.de/cms/en/simulationx.html,

2009

